• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Dúvida] Problema algébrico com derivada

[Dúvida] Problema algébrico com derivada

Mensagempor Jhonata » Seg Mai 28, 2012 23:32

Bem galera, ja vou logo agradecendo, pois até aquele que olha já ajuda muito, enfim, me deparei com o seguinte:

\lim_{x\to0+} \sqrt{x}\ lnx

Nota-se claramente uma indeterminação do tipo "0 * - \infty", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:

\lim_{x\to0^+} \frac {lnx} {\sqrt{x}} = \lim_{x\to0^+} \frac {\frac {d}{dx}lnx} {\frac {d}{dx}x^\frac{1}{2}} = \lim_{x\to0^+} \frac {\frac{1}{x}} {\frac{-1}{2}x^\frac{-3}{2}}

Tipo, eu pensei em multiplicar o númerador e o denominador por -2x^\frac{-3}{2}, mas sei lá... Tentei e acho que deu errado.

E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida] Problema algébrico com derivada

Mensagempor Russman » Ter Mai 29, 2012 00:00

Jhonata escreveu:Bem galera, ja vou logo agradecendo, pois até aquele que olha já ajuda muito, enfim, me deparei com o seguinte:

\lim_{x\to0+} \sqrt{x}\ lnx

Nota-se claramente uma indeterminação do tipo "0 * - \infty", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:

\lim_{x\to0^+} \frac {lnx} {\sqrt{x}} = \lim_{x\to0^+} \frac {\frac {d}{dx}lnx} {\frac {d}{dx}x^\frac{1}{2}} = \lim_{x\to0^+} \frac {\frac{1}{x}} {\frac{-1}{2}x^\frac{-3}{2}}

Tipo, eu pensei em multiplicar o númerador e o denominador por -2x^\frac{-3}{2}, mas sei lá... Tentei e acho que deu errado.

E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!



Você reescreveu a função de forma errada! O correto é

\lim_{x\to0+} \sqrt{x}\ lnx  \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}},

que é uma indeterminação do tipo \frac{- \infty}{\infty}. Assim,
\lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Dúvida] Problema algébrico com derivada

Mensagempor Jhonata » Ter Mai 29, 2012 00:14

Russman escreveu:
Jhonata escreveu:Bem galera, ja vou logo agradecendo, pois até aquele que olha já ajuda muito, enfim, me deparei com o seguinte:

\lim_{x\to0+} \sqrt{x}\ lnx

Nota-se claramente uma indeterminação do tipo "0 * - \infty", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:

\lim_{x\to0^+} \frac {lnx} {\sqrt{x}} = \lim_{x\to0^+} \frac {\frac {d}{dx}lnx} {\frac {d}{dx}x^\frac{1}{2}} = \lim_{x\to0^+} \frac {\frac{1}{x}} {\frac{-1}{2}x^\frac{-3}{2}}

Tipo, eu pensei em multiplicar o númerador e o denominador por -2x^\frac{-3}{2}, mas sei lá... Tentei e acho que deu errado.

E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!



Você reescreveu a função de forma errada! O correto é

\lim_{x\to0+} \sqrt{x}\ lnx  \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}},

que é uma indeterminação do tipo \frac{- \infty}{\infty}. Assim,
\lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0.


Ah, claro!! Que idiotice da minha parte! AHUAHUUA
Por isso não estava conseguindo... Havia esquecido de "notar" isso, bem como eu havia dito... Há esta hora a mente vai parando... huahuhuaa
Mas, então, muito obrigado e tenha uma boa noite!
Abraços!!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida] Problema algébrico com derivada

Mensagempor Jhonata » Ter Mai 29, 2012 01:27

Jhonata escreveu:
Russman escreveu:
Jhonata escreveu:Bem galera, ja vou logo agradecendo, pois até aquele que olha já ajuda muito, enfim, me deparei com o seguinte:

\lim_{x\to0+} \sqrt{x}\ lnx

Nota-se claramente uma indeterminação do tipo "0 * - \infty", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:

\lim_{x\to0^+} \frac {lnx} {\sqrt{x}} = \lim_{x\to0^+} \frac {\frac {d}{dx}lnx} {\frac {d}{dx}x^\frac{1}{2}} = \lim_{x\to0^+} \frac {\frac{1}{x}} {\frac{-1}{2}x^\frac{-3}{2}}

Tipo, eu pensei em multiplicar o númerador e o denominador por -2x^\frac{-3}{2}, mas sei lá... Tentei e acho que deu errado.

E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!



Você reescreveu a função de forma errada! O correto é

\lim_{x\to0+} \sqrt{x}\ lnx  \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}},

que é uma indeterminação do tipo \frac{- \infty}{\infty}. Assim,
\lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0.


Ah, claro!! Que idiotice da minha parte! AHUAHUUA
Por isso não estava conseguindo... Havia esquecido de "notar" isso, bem como eu havia dito... Há esta hora a mente vai parando... huahuhuaa
Mas, então, muito obrigado e tenha uma boa noite!
Abraços!!


Opa, espera aí... Mas acho que também tem algo errado no seu argumento:
A derivada de \frac{1}{\sqrt{x}} não é - \frac{1}{x^2}... E sim - \frac{1}{2x^\frac{3}{2}}, enfim... Depois de um banho, voltei a questão e acho que consegui resolver; se você não tivesse me dado o toque para aquele meu erro, eu demoraria para ter percebido, enfim, ficou assim:

\lim_{x\rightarrow{0}^+} \frac{\frac{1}{x}}{\frac{1}{-\frac{1x^\frac{3}{2}}{2}}} = \lim_{x\rightarrow{0}^+} \frac{\frac{1}{x}}{-\frac{2}{x^\frac{3}{2}}} = \lim_{x\rightarrow{0}^+} \frac{1}{x}*\frac{x^\frac{3}{2}}{-2} = \lim_{x\rightarrow{0}^+} (-2x^-^1)(x^\frac{3}{2})=

= \lim_{x\to0^+} -2x^\frac{3}{2}^-^1 = \lim_{x\to0^+} -2x^\frac{1}{2} = \lim_{x\to0^+} -2\sqrt{x} = 0

Será que estou certo ou tropecei em algo?
Editado pela última vez por Jhonata em Ter Mai 29, 2012 01:37, em um total de 1 vez.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida] Problema algébrico com derivada

Mensagempor Russman » Ter Mai 29, 2012 01:37

Nãaao, tu ta certo! Eu errei na hora de digitar a derivada! Mas, por sorte, daria no mesmo. kk

Só o -2 ali que deveria estar no denominador. Mas tbm, não faz diferença. (:
Editado pela última vez por Russman em Ter Mai 29, 2012 01:40, em um total de 1 vez.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Dúvida] Problema algébrico com derivada

Mensagempor Jhonata » Ter Mai 29, 2012 01:40

Russman escreveu:Nãaao, tu ta certo! Eu errei na hora de digitar a derivada! Mas, por sorte, daria no mesmo. kk


Bem, a banca da minha faculdade não ia pegar leve com estes nossos erros, mas valeu a pena trabalhar essa questãozinha, que aparentemente é tranquila...
De qualquer forma, muito obrigado mano!!
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida] Problema algébrico com derivada

Mensagempor Jhonata » Ter Mai 29, 2012 01:44

Russman escreveu:Nãaao, tu ta certo! Eu errei na hora de digitar a derivada! Mas, por sorte, daria no mesmo. kk

Só o -2 ali que deveria estar no denominador. Mas tbm, não faz diferença. (:


Tipo... Tu tem razão, porquê eu tirei o -2 do denominador? lol
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: [Dúvida] Problema algébrico com derivada

Mensagempor Jhonata » Ter Mai 29, 2012 01:44

Jhonata escreveu:
Russman escreveu:Nãaao, tu ta certo! Eu errei na hora de digitar a derivada! Mas, por sorte, daria no mesmo. kk

Só o -2 ali que deveria estar no denominador. Mas tbm, não faz diferença. (:


Tipo... Tu tem razão, porquê eu tirei o -2 do denominador? lol

Ahh pô, eu elevei à -1.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)