por Jhonata » Seg Mai 28, 2012 23:32
Bem galera, ja vou logo agradecendo, pois até aquele que olha já ajuda muito, enfim, me deparei com o seguinte:

Nota-se claramente uma indeterminação do tipo "

", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:

Tipo, eu pensei em multiplicar o númerador e o denominador por

, mas sei lá... Tentei e acho que deu errado.
E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Russman » Ter Mai 29, 2012 00:00
Jhonata escreveu:Bem galera, ja vou logo agradecendo, pois até aquele que olha já ajuda muito, enfim, me deparei com o seguinte:

Nota-se claramente uma indeterminação do tipo "

", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:

Tipo, eu pensei em multiplicar o númerador e o denominador por

, mas sei lá... Tentei e acho que deu errado.
E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!
Você reescreveu a função de forma errada! O correto é
![\lim_{x\to0+} \sqrt{x}\ lnx \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} \lim_{x\to0+} \sqrt{x}\ lnx \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}}](/latexrender/pictures/afc2594d2a1ab9b3c1fa1be6d1d3af69.png)
,
que é uma indeterminação do tipo

. Assim,
![\lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0 \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0](/latexrender/pictures/9474b84bba59b158dc6dbce9cf982c6f.png)
.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhonata » Ter Mai 29, 2012 00:14
Russman escreveu:Jhonata escreveu:Bem galera, ja vou logo agradecendo, pois até aquele que olha já ajuda muito, enfim, me deparei com o seguinte:

Nota-se claramente uma indeterminação do tipo "

", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:

Tipo, eu pensei em multiplicar o númerador e o denominador por

, mas sei lá... Tentei e acho que deu errado.
E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!
Você reescreveu a função de forma errada! O correto é
![\lim_{x\to0+} \sqrt{x}\ lnx \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} \lim_{x\to0+} \sqrt{x}\ lnx \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}}](/latexrender/pictures/afc2594d2a1ab9b3c1fa1be6d1d3af69.png)
,
que é uma indeterminação do tipo

. Assim,
![\lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0 \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0](/latexrender/pictures/9474b84bba59b158dc6dbce9cf982c6f.png)
.
Ah, claro!! Que idiotice da minha parte! AHUAHUUA
Por isso não estava conseguindo... Havia esquecido de "notar" isso, bem como eu havia dito... Há esta hora a mente vai parando... huahuhuaa
Mas, então, muito obrigado e tenha uma boa noite!
Abraços!!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Jhonata » Ter Mai 29, 2012 01:27
Jhonata escreveu:Russman escreveu:Jhonata escreveu:Bem galera, ja vou logo agradecendo, pois até aquele que olha já ajuda muito, enfim, me deparei com o seguinte:

Nota-se claramente uma indeterminação do tipo "

", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:

Tipo, eu pensei em multiplicar o númerador e o denominador por

, mas sei lá... Tentei e acho que deu errado.
E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!
Você reescreveu a função de forma errada! O correto é
![\lim_{x\to0+} \sqrt{x}\ lnx \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} \lim_{x\to0+} \sqrt{x}\ lnx \Rightarrow \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}}](/latexrender/pictures/afc2594d2a1ab9b3c1fa1be6d1d3af69.png)
,
que é uma indeterminação do tipo

. Assim,
![\lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0 \lim_{x\rightarrow{0}^{+}}\frac{ln(x)}{\frac{1}{\sqrt[]{x}}} = \lim_{x\rightarrow{0}^{+}}\frac{\frac{1}{x}}{\frac{-1}{{x}^{2}}}=-x=0](/latexrender/pictures/9474b84bba59b158dc6dbce9cf982c6f.png)
.
Ah, claro!! Que idiotice da minha parte! AHUAHUUA
Por isso não estava conseguindo... Havia esquecido de "notar" isso, bem como eu havia dito... Há esta hora a mente vai parando... huahuhuaa
Mas, então, muito obrigado e tenha uma boa noite!
Abraços!!
Opa, espera aí... Mas acho que também tem algo errado no seu argumento:
A derivada de

não é

... E sim

, enfim... Depois de um banho, voltei a questão e acho que consegui resolver; se você não tivesse me dado o toque para aquele meu erro, eu demoraria para ter percebido, enfim, ficou assim:


Será que estou certo ou tropecei em algo?
Editado pela última vez por
Jhonata em Ter Mai 29, 2012 01:37, em um total de 1 vez.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Russman » Ter Mai 29, 2012 01:37
Nãaao, tu ta certo! Eu errei na hora de digitar a derivada! Mas, por sorte, daria no mesmo. kk
Só o -2 ali que deveria estar no denominador. Mas tbm, não faz diferença. (:
Editado pela última vez por
Russman em Ter Mai 29, 2012 01:40, em um total de 1 vez.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por Jhonata » Ter Mai 29, 2012 01:40
Russman escreveu:Nãaao, tu ta certo! Eu errei na hora de digitar a derivada! Mas, por sorte, daria no mesmo. kk
Bem, a banca da minha faculdade não ia pegar leve com estes nossos erros, mas valeu a pena trabalhar essa questãozinha, que aparentemente é tranquila...
De qualquer forma, muito obrigado mano!!
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Jhonata » Ter Mai 29, 2012 01:44
Russman escreveu:Nãaao, tu ta certo! Eu errei na hora de digitar a derivada! Mas, por sorte, daria no mesmo. kk
Só o -2 ali que deveria estar no denominador. Mas tbm, não faz diferença. (:
Tipo... Tu tem razão, porquê eu tirei o -2 do denominador? lol
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
por Jhonata » Ter Mai 29, 2012 01:44
Jhonata escreveu:Russman escreveu:Nãaao, tu ta certo! Eu errei na hora de digitar a derivada! Mas, por sorte, daria no mesmo. kk
Só o -2 ali que deveria estar no denominador. Mas tbm, não faz diferença. (:
Tipo... Tu tem razão, porquê eu tirei o -2 do denominador? lol
Ahh pô, eu elevei à -1.
" A Matemática é a honra do espírito humano - Leibniz "
-

Jhonata
- Usuário Parceiro

-
- Mensagens: 66
- Registrado em: Sáb Mai 26, 2012 17:42
- Localização: Rio de Janeiro
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenheria Mecânica - UFRJ
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- problema algébrico
por fjf » Dom Out 14, 2012 02:32
- 5 Respostas
- 2322 Exibições
- Última mensagem por DanielFerreira

Dom Out 28, 2012 17:17
Álgebra Elementar
-
- Cálculo algébrico
por Aline Bianca » Qui Jun 24, 2010 22:31
- 2 Respostas
- 1481 Exibições
- Última mensagem por Aline Bianca

Qui Jun 24, 2010 23:16
Álgebra Elementar
-
- Cálculo algébrico 2
por Aline Bianca » Qui Jun 24, 2010 22:50
- 3 Respostas
- 2013 Exibições
- Última mensagem por MarceloFantini

Sex Jun 25, 2010 00:15
Álgebra Elementar
-
- [Cálculo Algébrico] Probleminha simples, ajuda ?
por Gabriel dos Reis » Qui Jul 10, 2014 18:54
- 1 Respostas
- 1198 Exibições
- Última mensagem por young_jedi

Qui Jul 10, 2014 23:27
Álgebra Elementar
-
- [Derivada] Dúvida ao calcular uma derivada...
por dileivas » Ter Mai 01, 2012 09:54
- 2 Respostas
- 2092 Exibições
- Última mensagem por dileivas

Ter Mai 01, 2012 17:18
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.