• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Laterais

Limites Laterais

Mensagempor FernandaBS » Sex Mai 25, 2012 18:04

Dada uma função f(x) = arc tg 1/x quando x--> 0, determinar os limites à direita e à esquerda. Não sei como fazer essa questão, alguém pode me ajudar ??
FernandaBS
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mai 25, 2012 10:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites Laterais

Mensagempor Guill » Sex Mai 25, 2012 20:16

Isso deve ser feito analizando o ciclo trigonométrico. Dado o limite:

\lim_{x\rightarrow 0} arctg \left(\frac{1}{x} \right)


Podemos convertê-lo para:

\lim_{a\rightarrow \infty} arctg \left(a) -----> Para valores à direita de x = 0

\lim_{a\rightarrow -\infty} arctg \left(a) -----> Para valores à esquerda de x = 0



Sabendo que a = \frac{1}{x}. Essas determinações surgiram da análize da função g(x) = a = \frac{1}{x}.




Agora fica simples pois, uma vez que sabemos que a tangente tende ao infinito no arco \frac{\pi}{2} e tende ao -infinito no arco \frac{3\pi}{2}=\frac{-\pi}{2}, temos que:

\lim_{x\rightarrow 0^{+}} arctg \left(\frac{1}{x} \right) = \frac{\pi}{2}

\lim_{x\rightarrow 0^{-}} arctg \left(\frac{1}{x} \right) = \frac{-\pi}{2}
Editado pela última vez por Guill em Sáb Mai 26, 2012 15:30, em um total de 3 vezes.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites Laterais

Mensagempor FernandaBS » Sex Mai 25, 2012 20:59

Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá \pi/2 e -\pi/2..
FernandaBS
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mai 25, 2012 10:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites Laterais

Mensagempor Guill » Sáb Mai 26, 2012 15:26

FernandaBS escreveu:Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá e ..



De fato, é a mesma coisa:

\frac{-\pi}{2}= \frac{3\pi}{2}


Vou modificar os valores. Eu cometi um pequeno erro de digitação.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: