• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites Laterais

Limites Laterais

Mensagempor FernandaBS » Sex Mai 25, 2012 18:04

Dada uma função f(x) = arc tg 1/x quando x--> 0, determinar os limites à direita e à esquerda. Não sei como fazer essa questão, alguém pode me ajudar ??
FernandaBS
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mai 25, 2012 10:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites Laterais

Mensagempor Guill » Sex Mai 25, 2012 20:16

Isso deve ser feito analizando o ciclo trigonométrico. Dado o limite:

\lim_{x\rightarrow 0} arctg \left(\frac{1}{x} \right)


Podemos convertê-lo para:

\lim_{a\rightarrow \infty} arctg \left(a) -----> Para valores à direita de x = 0

\lim_{a\rightarrow -\infty} arctg \left(a) -----> Para valores à esquerda de x = 0



Sabendo que a = \frac{1}{x}. Essas determinações surgiram da análize da função g(x) = a = \frac{1}{x}.




Agora fica simples pois, uma vez que sabemos que a tangente tende ao infinito no arco \frac{\pi}{2} e tende ao -infinito no arco \frac{3\pi}{2}=\frac{-\pi}{2}, temos que:

\lim_{x\rightarrow 0^{+}} arctg \left(\frac{1}{x} \right) = \frac{\pi}{2}

\lim_{x\rightarrow 0^{-}} arctg \left(\frac{1}{x} \right) = \frac{-\pi}{2}
Editado pela última vez por Guill em Sáb Mai 26, 2012 15:30, em um total de 3 vezes.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Limites Laterais

Mensagempor FernandaBS » Sex Mai 25, 2012 20:59

Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá \pi/2 e -\pi/2..
FernandaBS
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Mai 25, 2012 10:22
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limites Laterais

Mensagempor Guill » Sáb Mai 26, 2012 15:26

FernandaBS escreveu:Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá e ..



De fato, é a mesma coisa:

\frac{-\pi}{2}= \frac{3\pi}{2}


Vou modificar os valores. Eu cometi um pequeno erro de digitação.
Avatar do usuário
Guill
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Dom Jul 03, 2011 17:21
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.