por FernandaBS » Sex Mai 25, 2012 18:04
Dada uma função f(x) = arc tg 1/x quando x--> 0, determinar os limites à direita e à esquerda. Não sei como fazer essa questão, alguém pode me ajudar ??
-
FernandaBS
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Mai 25, 2012 10:22
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Guill » Sex Mai 25, 2012 20:16
Isso deve ser feito analizando o ciclo trigonométrico. Dado o limite:

Podemos convertê-lo para:

-----> Para valores à direita de x = 0

-----> Para valores à esquerda de x = 0
Sabendo que

. Essas determinações surgiram da análize da função g(x) =

.
Agora fica simples pois, uma vez que sabemos que a tangente tende ao infinito no arco

e tende ao -infinito no arco

, temos que:


Editado pela última vez por
Guill em Sáb Mai 26, 2012 15:30, em um total de 3 vezes.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por FernandaBS » Sex Mai 25, 2012 20:59
Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá

e

..
-
FernandaBS
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Mai 25, 2012 10:22
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Guill » Sáb Mai 26, 2012 15:26
FernandaBS escreveu:Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá e ..
De fato, é a mesma coisa:

Vou modificar os valores. Eu cometi um pequeno erro de digitação.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2651 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
-
- LIMITES LATERAIS
por Fabio Cabral » Qua Out 06, 2010 11:48
- 6 Respostas
- 4012 Exibições
- Última mensagem por Fabio Cabral

Qui Out 07, 2010 11:04
Funções
-
- Limites laterais
por valeuleo » Sáb Abr 09, 2011 21:07
- 8 Respostas
- 5568 Exibições
- Última mensagem por MarceloFantini

Dom Abr 10, 2011 21:00
Cálculo: Limites, Derivadas e Integrais
-
- [Limites laterais] Questão
por Leti Moura » Qui Jun 14, 2012 00:52
- 11 Respostas
- 6199 Exibições
- Última mensagem por Leti Moura

Sáb Jun 16, 2012 21:36
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites laterais..!
por mih123 » Ter Ago 28, 2012 15:40
- 8 Respostas
- 4821 Exibições
- Última mensagem por MarceloFantini

Qua Ago 29, 2012 16:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.