por FernandaBS » Sex Mai 25, 2012 18:04
Dada uma função f(x) = arc tg 1/x quando x--> 0, determinar os limites à direita e à esquerda. Não sei como fazer essa questão, alguém pode me ajudar ??
-
FernandaBS
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Mai 25, 2012 10:22
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Guill » Sex Mai 25, 2012 20:16
Isso deve ser feito analizando o ciclo trigonométrico. Dado o limite:

Podemos convertê-lo para:

-----> Para valores à direita de x = 0

-----> Para valores à esquerda de x = 0
Sabendo que

. Essas determinações surgiram da análize da função g(x) =

.
Agora fica simples pois, uma vez que sabemos que a tangente tende ao infinito no arco

e tende ao -infinito no arco

, temos que:


Editado pela última vez por
Guill em Sáb Mai 26, 2012 15:30, em um total de 3 vezes.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por FernandaBS » Sex Mai 25, 2012 20:59
Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá

e

..
-
FernandaBS
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sex Mai 25, 2012 10:22
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por Guill » Sáb Mai 26, 2012 15:26
FernandaBS escreveu:Obrigada Guill.. Mas no gabarito do livro (Diva Flemming) dá e ..
De fato, é a mesma coisa:

Vou modificar os valores. Eu cometi um pequeno erro de digitação.
-

Guill
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Dom Jul 03, 2011 17:21
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limites] Dúvida sobre limites laterais
por Subnik » Sáb Abr 04, 2015 18:24
- 1 Respostas
- 2785 Exibições
- Última mensagem por DanielFerreira

Dom Abr 12, 2015 16:10
Cálculo: Limites, Derivadas e Integrais
-
- LIMITES LATERAIS
por Fabio Cabral » Qua Out 06, 2010 11:48
- 6 Respostas
- 4229 Exibições
- Última mensagem por Fabio Cabral

Qui Out 07, 2010 11:04
Funções
-
- Limites laterais
por valeuleo » Sáb Abr 09, 2011 21:07
- 8 Respostas
- 5868 Exibições
- Última mensagem por MarceloFantini

Dom Abr 10, 2011 21:00
Cálculo: Limites, Derivadas e Integrais
-
- [Limites laterais] Questão
por Leti Moura » Qui Jun 14, 2012 00:52
- 11 Respostas
- 6549 Exibições
- Última mensagem por Leti Moura

Sáb Jun 16, 2012 21:36
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Limites laterais..!
por mih123 » Ter Ago 28, 2012 15:40
- 8 Respostas
- 5086 Exibições
- Última mensagem por MarceloFantini

Qua Ago 29, 2012 16:59
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.