• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo - Parametrização

Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:14

Considere o cilindro C = {(x, y, z), x²+y² =2, 0 < z < 2}. Utilizando o teorema de Stokes calcule o ?uxo do campo de vetores F(x, y, z) = (x, y, ?2 z) através de C no sentido da normal exterior.

Se utilizarmos Stokes, obtemos que o rotacional dá zero. Logo a integral seria zero?
Se fizer pelo cálculo do fluxo, temos como parametrização r(\Theta, z)= (\sqrt[2]{2} *cos \Theta, \sqrt[2]{2}sen\Theta, z)

Necessitamos calcular dr/dz X dr/ do?
Está certo isso?
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 21:24

Com o teorema de Stokes se calcula o fluxo do rotacional de F, não de F. Ainda, o teorema de Stokes expõe uma forma alternativa de calcular trabalho de deslocamento sobre caminhos fechado.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:28

Mas então o enunciado está estranho, né?
Pq ele pede pra calcular o fluxo do campo e não do rotacional do campo! Por isso que tentei utilizar calculando diretamente!
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 21:30

É, ta incoerente com a teoria! Eu acredito que a melhor saída é usar o Teorema da Divergência de Gauss.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:34

Obrigado! Vou fazer aqui! E tem que abrir ainda..pq a superfície não é fechada! Mas obrigado! :D
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 21:38

Aí depende do problema. O enunciado não dá muita idéia se a superficie é fechada ou não. A meu entendemento, o cilindro é uma superfície fechada. Por isso eu sigeri o Teorema da Divergência. Mas se for só o fluxo através do tronco do cilindro calcula pela definição mesmo de fluxo. (;
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:44

Eu acredito que a superfície seria fechada neste caso se z fosse maior e igual a 0 e menor e igual a 2.
Supondo que não seja fechada, a parametrização que escolhi está certa, né? E na hora de cálcular o produto vetorial é daquele jeito mesmo?
Pq geralmente sobram 2 parametros na parametrização somente! Só que o z só está ligado a terceira coordenada sem relação com as outras duas! =S
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 21:54

Feliperpr escreveu:Eu acredito que a superfície seria fechada neste caso se z fosse maior e igual a 0 e menor e igual a 2.
Supondo que não seja fechada, a parametrização que escolhi está certa, né? E na hora de cálcular o produto vetorial é daquele jeito mesmo?
Pq geralmente sobram 2 parametros na parametrização somente! Só que o z só está ligado a terceira coordenada sem relação com as outras duas! =S


Supondo a superfície aberta.

Você conhece o teorema a seguir?

\iint_{S}^{}\overrightarrow{F}\cdot \overrightarrow{n}$ dS =\iint_{R}^{} \overrightarrow{F}\cdot(\pm \overrightarrow{\bigtriangledown} \cdot G)dR
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 21:57

Que eu me lembre não vi nada nesse formato! :/
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 22:00

Comoo você calcularia então o fluxo através do cilindro aberto? Qual fórmula?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 22:04

Desculpa se eu estiver errado...mas tentaria calcular usando a primeira fórmula até antes do igual! Que é a formula geral do fluxo, não? =S
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Cálculo - Parametrização

Mensagempor Russman » Ter Abr 24, 2012 22:10

É maais dificil usando a definição! Se você utilizar aquele teorema que eu postei fica mais fácil. Ele consiste em calcular o fluxo através do cilindro aberto usando o fluxo através de uma "sombra" do mesmo, que é o plano R.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Cálculo - Parametrização

Mensagempor Feliperpr » Ter Abr 24, 2012 22:18

Vou procurar! Muito obrigado! ;)
Feliperpr
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Sáb Abr 21, 2012 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.