• Anúncio Global
    Respostas
    Exibições
    Última mensagem

mmc

mmc

Mensagempor carolina camargo » Ter Jun 16, 2009 16:44

Como tirar o MMC dessa função:

\frac{2}{-k+\sqrt[]{k^2-144}}+\frac{2}{-k-\sqrt[]{k^2-144}}=\frac{5}{12}




Ainda sou iniciante e tenho muita dificuldade.
Obrigada!
carolina camargo
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jun 16, 2009 16:21
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: mmc

Mensagempor Cleyson007 » Ter Jun 16, 2009 19:02

Boa tarde Carolina!

Primeiramente, seja bem vinda ao Ajuda Matemática.

Carolina, você tem o gabarito da questão?

Quero ver se confirma com minha resposta :-P

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: mmc

Mensagempor Cleyson007 » Qua Jun 17, 2009 10:22

Bom dia Carolina!

Vou apresentar como estou resolvendo:

MMC da equação: (-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144})

Sabendo o MMC fica fácil :-P (Basta dividir o MMC pelo denominador e multiplicar pelo numerador)

Resolvendo, encontra-se k=-90

Qualquer dúvida é só informar. :y:

Espero ter ajudado.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: mmc

Mensagempor carolina camargo » Qua Jun 17, 2009 16:08

Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15
carolina camargo
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jun 16, 2009 16:21
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: mmc

Mensagempor Cleyson007 » Qua Jun 17, 2009 18:21

carolina camargo escreveu:Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15


Olá Carolina!

Carolina, por favor apresente o seu modo de resolução... assim vamos descobrir onde está havendo divergência na resolução :y:

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: mmc

Mensagempor Molina » Qua Jun 17, 2009 19:27

Cleyson007 escreveu:
carolina camargo escreveu:Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15


Olá Carolina!

Carolina, por favor apresente o seu modo de resolução... assim vamos descobrir onde está havendo divergência na resolução :y:

Até mais.

Um abraço.


Meu k também deu -15.
E acho que está correto, pois fiz a substituição e fechou!

Qualquer coisa joga isso daqui no google: (2/(15+sqrt(15^2 - 144)) + (2/(15-sqrt(15^2 - 144))
e isso daqui também: 5/12

Grande abraços, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: mmc

Mensagempor Cleyson007 » Qui Jun 18, 2009 08:38

Bom dia!

Já que está havendo uma divergência das respostas, vou explicar como resolvi:

O mmc encontrado foi: (-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144})

Resolvendo.... =({-k})^{2}-({k}^{2}-144)=144

\frac{[-2k-2\sqrt[2]({{k}^{2}-144)-2k+2\sqrt[2]({{k}^{2}-144)]}}}{144}=\frac{5}{2}

\frac{-4k}{144}=\frac{5}{2}

Logo, k=-90

--> Talvez interpretei errado o exercício.... mas creio que a resolução está correta :$

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: mmc

Mensagempor carolina camargo » Qui Jun 18, 2009 16:56

Bom, não me dou muito bem com o "editor de fórmulas", mas acho que é isso.

\frac{-4k}{\left(-k+\sqrt[]{k^2-144} \right)\left(-k-\sqrt[]{k^2-144} \right)}=\frac{5}{12}\Rightarrow \frac{-4k}{k^2-\left(k^2-144 \right)}=\frac{5}{12}
...


\Rightarrow \frac{-4k}{144}=\frac{5}{12}\Rightarrow -4k=\frac{720}{12}\Rightarrow k=\frac{60}{-4}\Rightarrow k=-15

abraço!
carolina camargo
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jun 16, 2009 16:21
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: mmc

Mensagempor Cleyson007 » Sáb Jun 20, 2009 01:54

Boa noite Carolina!

Carolina, desculpe... sua resolução está correta :)

Estava calculando colocando o segundo membro da equação como \frac{5}{2}. :-D

Depois que eu fui reparar que é \frac{5}{12}...

Até mais.

Um abraço.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado


Voltar para Funções

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?