por carolina camargo » Ter Jun 16, 2009 16:44
Como tirar o MMC dessa função:
![\frac{2}{-k+\sqrt[]{k^2-144}}+\frac{2}{-k-\sqrt[]{k^2-144}}=\frac{5}{12} \frac{2}{-k+\sqrt[]{k^2-144}}+\frac{2}{-k-\sqrt[]{k^2-144}}=\frac{5}{12}](/latexrender/pictures/0a26fa73dca6296c427f1a108d450edb.png)
Ainda sou iniciante e tenho muita dificuldade.
Obrigada!
-
carolina camargo
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 16, 2009 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Cleyson007 » Ter Jun 16, 2009 19:02
Boa tarde Carolina!
Primeiramente, seja bem vinda ao Ajuda Matemática.
Carolina, você tem o gabarito da questão?
Quero ver se confirma com minha resposta
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Cleyson007 » Qua Jun 17, 2009 10:22
Bom dia Carolina!
Vou apresentar como estou resolvendo:
MMC da equação:
![(-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144}) (-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144})](/latexrender/pictures/730c9edd6fb57f15e8f10e714b13c55a.png)
Sabendo o MMC fica fácil

(Basta dividir o MMC pelo denominador e multiplicar pelo numerador)
Resolvendo, encontra-se

Qualquer dúvida é só informar.
Espero ter ajudado.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por carolina camargo » Qua Jun 17, 2009 16:08
Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15
-
carolina camargo
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 16, 2009 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Cleyson007 » Qua Jun 17, 2009 18:21
carolina camargo escreveu:Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15
Olá Carolina!
Carolina, por favor apresente o seu modo de resolução... assim vamos descobrir onde está havendo divergência na resolução
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Molina » Qua Jun 17, 2009 19:27
Cleyson007 escreveu:carolina camargo escreveu:Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15
Olá Carolina!
Carolina, por favor apresente o seu modo de resolução... assim vamos descobrir onde está havendo divergência na resolução
Até mais.
Um abraço.
Meu k também deu -15.
E acho que está correto, pois fiz a substituição e fechou!
Qualquer coisa joga isso daqui no google: (2/(15+sqrt(15^2 - 144)) + (2/(15-sqrt(15^2 - 144))
e isso daqui também: 5/12
Grande abraços,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Cleyson007 » Qui Jun 18, 2009 08:38
Bom dia!
Já que está havendo uma divergência das respostas, vou explicar como resolvi:
O mmc encontrado foi:
![(-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144}) (-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144})](/latexrender/pictures/730c9edd6fb57f15e8f10e714b13c55a.png)
Resolvendo....

-2k+2\sqrt[2]({{k}^{2}-144)]}}}{144}=\frac{5}{2} \frac{[-2k-2\sqrt[2]({{k}^{2}-144)-2k+2\sqrt[2]({{k}^{2}-144)]}}}{144}=\frac{5}{2}](/latexrender/pictures/b33b7c58d7889b9478e198922f5427d8.png)

Logo,
--> Talvez interpretei errado o exercício.... mas creio que a resolução está correta
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por carolina camargo » Qui Jun 18, 2009 16:56
Bom, não me dou muito bem com o "editor de fórmulas", mas acho que é isso.
![\frac{-4k}{\left(-k+\sqrt[]{k^2-144} \right)\left(-k-\sqrt[]{k^2-144} \right)}=\frac{5}{12}\Rightarrow \frac{-4k}{k^2-\left(k^2-144 \right)}=\frac{5}{12}
...
\Rightarrow \frac{-4k}{144}=\frac{5}{12}\Rightarrow -4k=\frac{720}{12}\Rightarrow k=\frac{60}{-4}\Rightarrow k=-15 \frac{-4k}{\left(-k+\sqrt[]{k^2-144} \right)\left(-k-\sqrt[]{k^2-144} \right)}=\frac{5}{12}\Rightarrow \frac{-4k}{k^2-\left(k^2-144 \right)}=\frac{5}{12}
...
\Rightarrow \frac{-4k}{144}=\frac{5}{12}\Rightarrow -4k=\frac{720}{12}\Rightarrow k=\frac{60}{-4}\Rightarrow k=-15](/latexrender/pictures/c27e7e37f3caa10c874ede19c045f188.png)
abraço!
-
carolina camargo
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 16, 2009 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Cleyson007 » Sáb Jun 20, 2009 01:54
Boa noite Carolina!
Carolina, desculpe... sua resolução está correta
Estava calculando colocando o segundo membro da equação como

.
Depois que eu fui reparar que é

...
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.