por carolina camargo » Ter Jun 16, 2009 16:44
Como tirar o MMC dessa função:
![\frac{2}{-k+\sqrt[]{k^2-144}}+\frac{2}{-k-\sqrt[]{k^2-144}}=\frac{5}{12} \frac{2}{-k+\sqrt[]{k^2-144}}+\frac{2}{-k-\sqrt[]{k^2-144}}=\frac{5}{12}](/latexrender/pictures/0a26fa73dca6296c427f1a108d450edb.png)
Ainda sou iniciante e tenho muita dificuldade.
Obrigada!
-
carolina camargo
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 16, 2009 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Cleyson007 » Ter Jun 16, 2009 19:02
Boa tarde Carolina!
Primeiramente, seja bem vinda ao Ajuda Matemática.
Carolina, você tem o gabarito da questão?
Quero ver se confirma com minha resposta
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Cleyson007 » Qua Jun 17, 2009 10:22
Bom dia Carolina!
Vou apresentar como estou resolvendo:
MMC da equação:
![(-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144}) (-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144})](/latexrender/pictures/730c9edd6fb57f15e8f10e714b13c55a.png)
Sabendo o MMC fica fácil

(Basta dividir o MMC pelo denominador e multiplicar pelo numerador)
Resolvendo, encontra-se

Qualquer dúvida é só informar.
Espero ter ajudado.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por carolina camargo » Qua Jun 17, 2009 16:08
Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15
-
carolina camargo
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 16, 2009 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Cleyson007 » Qua Jun 17, 2009 18:21
carolina camargo escreveu:Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15
Olá Carolina!
Carolina, por favor apresente o seu modo de resolução... assim vamos descobrir onde está havendo divergência na resolução
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por Molina » Qua Jun 17, 2009 19:27
Cleyson007 escreveu:carolina camargo escreveu:Cleyson, obrigada pela ajuda.
De acordo com meus cálculos deu k= -15
Olá Carolina!
Carolina, por favor apresente o seu modo de resolução... assim vamos descobrir onde está havendo divergência na resolução
Até mais.
Um abraço.
Meu k também deu -15.
E acho que está correto, pois fiz a substituição e fechou!
Qualquer coisa joga isso daqui no google: (2/(15+sqrt(15^2 - 144)) + (2/(15-sqrt(15^2 - 144))
e isso daqui também: 5/12
Grande abraços,

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por Cleyson007 » Qui Jun 18, 2009 08:38
Bom dia!
Já que está havendo uma divergência das respostas, vou explicar como resolvi:
O mmc encontrado foi:
![(-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144}) (-k+\sqrt[2]{{k}^{2}-144})(-k-\sqrt[2]{{k}^{2}-144})](/latexrender/pictures/730c9edd6fb57f15e8f10e714b13c55a.png)
Resolvendo....

-2k+2\sqrt[2]({{k}^{2}-144)]}}}{144}=\frac{5}{2} \frac{[-2k-2\sqrt[2]({{k}^{2}-144)-2k+2\sqrt[2]({{k}^{2}-144)]}}}{144}=\frac{5}{2}](/latexrender/pictures/b33b7c58d7889b9478e198922f5427d8.png)

Logo,
--> Talvez interpretei errado o exercício.... mas creio que a resolução está correta
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
por carolina camargo » Qui Jun 18, 2009 16:56
Bom, não me dou muito bem com o "editor de fórmulas", mas acho que é isso.
![\frac{-4k}{\left(-k+\sqrt[]{k^2-144} \right)\left(-k-\sqrt[]{k^2-144} \right)}=\frac{5}{12}\Rightarrow \frac{-4k}{k^2-\left(k^2-144 \right)}=\frac{5}{12}
...
\Rightarrow \frac{-4k}{144}=\frac{5}{12}\Rightarrow -4k=\frac{720}{12}\Rightarrow k=\frac{60}{-4}\Rightarrow k=-15 \frac{-4k}{\left(-k+\sqrt[]{k^2-144} \right)\left(-k-\sqrt[]{k^2-144} \right)}=\frac{5}{12}\Rightarrow \frac{-4k}{k^2-\left(k^2-144 \right)}=\frac{5}{12}
...
\Rightarrow \frac{-4k}{144}=\frac{5}{12}\Rightarrow -4k=\frac{720}{12}\Rightarrow k=\frac{60}{-4}\Rightarrow k=-15](/latexrender/pictures/c27e7e37f3caa10c874ede19c045f188.png)
abraço!
-
carolina camargo
- Usuário Ativo

-
- Mensagens: 11
- Registrado em: Ter Jun 16, 2009 16:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia
- Andamento: cursando
por Cleyson007 » Sáb Jun 20, 2009 01:54
Boa noite Carolina!
Carolina, desculpe... sua resolução está correta
Estava calculando colocando o segundo membro da equação como

.
Depois que eu fui reparar que é

...
Até mais.
Um abraço.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.