• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação Exponencial]

[Equação Exponencial]

Mensagempor jmbraganca » Qui Mar 22, 2012 20:41

Então galera, beleza? To com uma dúvida que já revirei um tanto de livros, um tanto de cadernos, revirei o google e não achei a resposta de como proceder. Provavelmente eu não estou procurando direito, mas será que vocês podem me ajudar?

Eu estou com essa fórmula abaixo':

0,0285 = {\left(1 + i\div30 \right)}^{30} - 1

O que eu fiz foi passar o 1 'somando' para o outro lado da igualdade e depois passei o 30 que estava dividindo o i para o outro lado da igualdade, só que multiplicando. Ficou assim:

1,86 = {\left(1 + i \right)}^{30}

De qualquer forma, acho que errei passando o 30 e também não sei o que fazer com o 'i' e com o expoente lá em cima. Alguém por favor pode me dar uma luz? Estou desesperado e quebrando a cabeça para resolver este exercício, mas não consigo!
jmbraganca
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Equação Exponencial]

Mensagempor nietzsche » Qui Mar 22, 2012 21:05

O i denota a unidade imaginária?
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Equação Exponencial]

Mensagempor joaofonseca » Qui Mar 22, 2012 21:09

Parto do principio que i não é a unidade imaginaria, até porque se assim fosse não fazia sentido encontrar o valor de i.
A expressão que foi colocada não é uma equação exponencial, pois a variável não está como expoente.É uma equação "normal" com uma potência.Logo resolve-se como normalmente se resolvem as equações polinomiais de 1º,2º ou 3º grau.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Equação Exponencial]

Mensagempor jmbraganca » Qui Mar 22, 2012 21:19

O i é uma incógnita. Consegui resolver, eu passei o -1 para o outro lado somando, depois tirei a raiz 30ª dos dois lados e depois passei o +1 para o outro lado subtraindo e depois multipliquei pelo 30 e achei a resposta.

0,0285 = {\left(1 + i\div30 \right)}^{30} - 1

Passando aquele -1 para o lado esquerdo da igualdade:
1,0285 = {\left(1 + i\div30 \right)}^{30}

Tirando a raiz dos dois lados:
\sqrt[30]{1,0285} = \sqrt[30]{{\left(1 + i\div30 \right)}^{30}}

Resultado:
1,0009372 = 1 + i\div30

Após isso, passar esse 1 para o lado esquerdo da igualdade, ficando assim:
0,0009372 = i\div30

Agora o 30 que está dividindo passará multiplicando e teremos o resultado de i:
0,0009372\times30 = i

Valor de i:
0,02811 = i

Prontinho, de acordo com meu gabarito está certinho ^^
Valeuzão galera!
jmbraganca
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Equação Exponencial]

Mensagempor nietzsche » Qui Mar 22, 2012 21:28

É verdade, é que não li o título da pergunta. Tinha pensado em algo como provar que o lado esquerdo pode ser igual ao lado direito.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?