• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equação Exponencial]

[Equação Exponencial]

Mensagempor jmbraganca » Qui Mar 22, 2012 20:41

Então galera, beleza? To com uma dúvida que já revirei um tanto de livros, um tanto de cadernos, revirei o google e não achei a resposta de como proceder. Provavelmente eu não estou procurando direito, mas será que vocês podem me ajudar?

Eu estou com essa fórmula abaixo':

0,0285 = {\left(1 + i\div30 \right)}^{30} - 1

O que eu fiz foi passar o 1 'somando' para o outro lado da igualdade e depois passei o 30 que estava dividindo o i para o outro lado da igualdade, só que multiplicando. Ficou assim:

1,86 = {\left(1 + i \right)}^{30}

De qualquer forma, acho que errei passando o 30 e também não sei o que fazer com o 'i' e com o expoente lá em cima. Alguém por favor pode me dar uma luz? Estou desesperado e quebrando a cabeça para resolver este exercício, mas não consigo!
jmbraganca
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Equação Exponencial]

Mensagempor nietzsche » Qui Mar 22, 2012 21:05

O i denota a unidade imaginária?
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Equação Exponencial]

Mensagempor joaofonseca » Qui Mar 22, 2012 21:09

Parto do principio que i não é a unidade imaginaria, até porque se assim fosse não fazia sentido encontrar o valor de i.
A expressão que foi colocada não é uma equação exponencial, pois a variável não está como expoente.É uma equação "normal" com uma potência.Logo resolve-se como normalmente se resolvem as equações polinomiais de 1º,2º ou 3º grau.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Equação Exponencial]

Mensagempor jmbraganca » Qui Mar 22, 2012 21:19

O i é uma incógnita. Consegui resolver, eu passei o -1 para o outro lado somando, depois tirei a raiz 30ª dos dois lados e depois passei o +1 para o outro lado subtraindo e depois multipliquei pelo 30 e achei a resposta.

0,0285 = {\left(1 + i\div30 \right)}^{30} - 1

Passando aquele -1 para o lado esquerdo da igualdade:
1,0285 = {\left(1 + i\div30 \right)}^{30}

Tirando a raiz dos dois lados:
\sqrt[30]{1,0285} = \sqrt[30]{{\left(1 + i\div30 \right)}^{30}}

Resultado:
1,0009372 = 1 + i\div30

Após isso, passar esse 1 para o lado esquerdo da igualdade, ficando assim:
0,0009372 = i\div30

Agora o 30 que está dividindo passará multiplicando e teremos o resultado de i:
0,0009372\times30 = i

Valor de i:
0,02811 = i

Prontinho, de acordo com meu gabarito está certinho ^^
Valeuzão galera!
jmbraganca
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Mar 22, 2012 20:26
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: [Equação Exponencial]

Mensagempor nietzsche » Qui Mar 22, 2012 21:28

É verdade, é que não li o título da pergunta. Tinha pensado em algo como provar que o lado esquerdo pode ser igual ao lado direito.
nietzsche
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 99
Registrado em: Qua Jan 12, 2011 14:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}