• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas]- Inclinação da tangente

[Derivadas]- Inclinação da tangente

Mensagempor Ana_Rodrigues » Qui Fev 23, 2012 15:51

A tabela mostra a estimativa da porcentagem da população da Europa que usa telefones celulares. (Estimativas dadas para meados dos anos).

____________________________________________________________
| Ano__|_1998__|__1999__|__2000__|__2001__|__2002__|__2003__|
|__P___|__28___|___39___|___55___|___68___|___77___|___83___|



b) Estime a taxa instantânea de crescimento em 2000 tomando a média de duas taxas médias de variação. Quais são suas unidades?

c) Estime a taxa instantânea de crescimento em 2000 medindo a inclinação de uma tangente.


Olá. Eu consegui fazer a letra "b" e a resposta é 14,5 por cento/ano. Quanto à pergunta "c" eu não estou conseguindo calcular o limite (derivada) sem ter a função, e no gabarito a resposta é 15 por cento/ano. Como chegar a esse resultado?


Agradeço desde já, à quem me ajudar a entender!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas]- Inclinação da tangente

Mensagempor LuizAquino » Qui Fev 23, 2012 19:45

Ana_Rodrigues escreveu:A tabela mostra a estimativa da porcentagem da população da Europa que usa telefones celulares. (Estimativas dadas para meados dos anos).

____________________________________________________________
| Ano__|_1998__|__1999__|__2000__|__2001__|__2002__|__2003__|
|__P___|__28___|___39___|___55___|___68___|___77___|___83___|


b) Estime a taxa instantânea de crescimento em 2000 tomando a média de duas taxas médias de variação. Quais são suas unidades?

c) Estime a taxa instantânea de crescimento em 2000 medindo a inclinação de uma tangente.


Ana_Rodrigues escreveu:Olá. Eu consegui fazer a letra "b" e a resposta é 14,5 por cento/ano. Quanto à pergunta "c" eu não estou conseguindo calcular o limite (derivada) sem ter a função, e no gabarito a resposta é 15 por cento/ano. Como chegar a esse resultado?


Você tem acesso a um livro de Cálculo vol I de James Stewart? Logo no início da seção que trata sobre taxa de variação instantânea há um exercício parecido com esse.

A ideia básica é:
1) Marcar os pontos dados em um plano cartesiano. Deve-se considerar o eixo x como sendo o ano e o eixo y como sendo a porcentagem;
2) Desenhar uma curva suave que interpola os pontos;
3) Traçar um segmento tangente a curva no ponto (2000, 55);
4) Usar o segmento tangente traçado no passo 3) como sendo a hipotenusa de um triângulo retângulo, sendo que cada cateto desse triângulo é paralelo a um dos eixos;
5) Medir os catetos do triângulo formado no passo 4) e calcular a tangente usando essas medidas.

Vale lembrar que a reposta do gabarito é aproximada. Sendo assim, após executar os passos acima você irá obter um número que é próximo de 15.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivadas]- Inclinação da tangente

Mensagempor Ana_Rodrigues » Qui Fev 23, 2012 20:48

Eu estou estudando cálculo pelo livro do James Stewart. Se eu colocasse na letra "c" a mesma resposta da letra "b" eu poderia estar correta?
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas]- Inclinação da tangente

Mensagempor LuizAquino » Qui Fev 23, 2012 21:00

Ana_Rodrigues escreveu:Eu estou estudando cálculo pelo livro do James Stewart. Se eu colocasse na letra "c" a mesma resposta da letra "b" eu poderia estar correta?


Nesse contexto, não poderia. Afinal de contas, o exercício diz explicitamente que a estimativa deve ser obtida "medindo a inclinação de uma tangente".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivadas]- Inclinação da tangente

Mensagempor Ana_Rodrigues » Qui Fev 23, 2012 21:10

Obrigada!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59