• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Trigonométrica

Função Trigonométrica

Mensagempor Arkanus Darondra » Qui Jan 12, 2012 18:39

Como proceder para esboçar o gráfico da função f(x) = 3 + 3cos(3x +3)?

Agradeço a quem ajudar.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Trigonométrica

Mensagempor joaofonseca » Qui Jan 12, 2012 20:40

Numa função trigonométrica, podemos desde logo identificar: amplitude, periodo e deslocamentos horizontal e vertical.

Amplitude: 3

Periodo: \frac{2 \pi}{3}

Deslocamento horizontal: -1 (para a esquerda)

Deslocamento vertical: 3 (para cima)

Agora divide o periodo em 4 partes: \frac{ \pi}{6}
Agora ao ponto -1 soma 4 vezes o resultado anterior.De cada vez que somares anota o resultado.Será útil colocares tudo com o mesmo denominador.
Por fim substitui x na função pelos valores obtidos.Se tudo correu bem, vai obter 1, 0 ,-1,0 e 1.Marca as coordenadas, acabaste de esboçar um periodo da função.

Esta questão esta relacionada com as transformações de funções trigonometricas.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Trigonométrica

Mensagempor Arkanus Darondra » Qui Jan 12, 2012 21:30

Olá joaofonseca,

Obrigado pela explicação.
Pesquisei sobre o assunto e encontrei que para uma função cosseno f(x) = a + b.cos (mx + n) temos que:
período = \frac{2{\pi}}{|m|}
a = deslocamento vertical
b = amplitude
m = altera o período
n = deslocamento horizontal

Como temos, nesse caso, f(x) = 3 + 3cos(3x +3),
isso explica o fato de a amplitude ser 3, o período ser \frac{2{\pi}}{3} e o deslocamento vertical ser ser 3.
Porém, ainda não consegui entender porque o deslocamento horizontal é -1 e o que você disse após a divisão do período em 4 partes.

Poderia me explicar novamente?
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Trigonométrica

Mensagempor joaofonseca » Qui Jan 12, 2012 21:48

Deixo aqui um video do Youtube.Em inglês

joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Trigonométrica

Mensagempor Arkanus Darondra » Sex Jan 13, 2012 12:46

Finalmente consegui esboçar o gráfico desta função.
O grande problema que encontrei foi o fato de o período estar em radianos e o deslocamento horizontal não.
A solução que encontrei foi aproximar o período \frac{2{\pi}}{3} para 2,08
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.