• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Trigonométrica

Função Trigonométrica

Mensagempor Arkanus Darondra » Qui Jan 12, 2012 18:39

Como proceder para esboçar o gráfico da função f(x) = 3 + 3cos(3x +3)?

Agradeço a quem ajudar.
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Trigonométrica

Mensagempor joaofonseca » Qui Jan 12, 2012 20:40

Numa função trigonométrica, podemos desde logo identificar: amplitude, periodo e deslocamentos horizontal e vertical.

Amplitude: 3

Periodo: \frac{2 \pi}{3}

Deslocamento horizontal: -1 (para a esquerda)

Deslocamento vertical: 3 (para cima)

Agora divide o periodo em 4 partes: \frac{ \pi}{6}
Agora ao ponto -1 soma 4 vezes o resultado anterior.De cada vez que somares anota o resultado.Será útil colocares tudo com o mesmo denominador.
Por fim substitui x na função pelos valores obtidos.Se tudo correu bem, vai obter 1, 0 ,-1,0 e 1.Marca as coordenadas, acabaste de esboçar um periodo da função.

Esta questão esta relacionada com as transformações de funções trigonometricas.
joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Trigonométrica

Mensagempor Arkanus Darondra » Qui Jan 12, 2012 21:30

Olá joaofonseca,

Obrigado pela explicação.
Pesquisei sobre o assunto e encontrei que para uma função cosseno f(x) = a + b.cos (mx + n) temos que:
período = \frac{2{\pi}}{|m|}
a = deslocamento vertical
b = amplitude
m = altera o período
n = deslocamento horizontal

Como temos, nesse caso, f(x) = 3 + 3cos(3x +3),
isso explica o fato de a amplitude ser 3, o período ser \frac{2{\pi}}{3} e o deslocamento vertical ser ser 3.
Porém, ainda não consegui entender porque o deslocamento horizontal é -1 e o que você disse após a divisão do período em 4 partes.

Poderia me explicar novamente?
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Função Trigonométrica

Mensagempor joaofonseca » Qui Jan 12, 2012 21:48

Deixo aqui um video do Youtube.Em inglês

joaofonseca
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 196
Registrado em: Sáb Abr 30, 2011 12:25
Localização: Lisboa
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Função Trigonométrica

Mensagempor Arkanus Darondra » Sex Jan 13, 2012 12:46

Finalmente consegui esboçar o gráfico desta função.
O grande problema que encontrei foi o fato de o período estar em radianos e o deslocamento horizontal não.
A solução que encontrei foi aproximar o período \frac{2{\pi}}{3} para 2,08
Arkanus Darondra
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 187
Registrado em: Seg Dez 26, 2011 18:19
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59