• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Raizes de Polinômios

Raizes de Polinômios

Mensagempor GabyRitter » Ter Mai 19, 2009 22:43

Olá...

Estou encontrando dificuldade em encontrar o número de raízes de um polinômio!

Já tentei tornar de várias formas, mas elas não tem dado certo, creio que estou com alguma informação trocada!

Se alguém souber relmente como fazer agradeço!
GabyRitter
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 17, 2009 19:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Mensagempor GabyRitter » Ter Mai 19, 2009 22:44

,,,
GabyRitter
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 17, 2009 19:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Raizes de Polinômios

Mensagempor Cleyson007 » Qua Mai 20, 2009 09:50

Bom dia Gaby, tudo bem?

Por favor coloque a questão no fórum :)

Talvez possa ajudá-la, ou algum outro usuário deste fórum, ok?

Um abraço.

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Raizes de Polinômios

Mensagempor GabyRitter » Qua Mai 20, 2009 22:58

A questão é a seguinte:
- Dado o polinômio p(x) = 4x(3) - 4x(2) - 4x
Obs: o que esta entre parenteses ao lado do x é a potência a qual o x está elevado.
a. P2(x) = p(x) + 6. Quantas raizes o polinômio P2(x) possui?
Encontrei os divisores de 6 e os testei, mas não encontrei nunhuma raiz real, mas na resposta do exercício diz que tem UMA raiz.
GabyRitter
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Dom Mai 17, 2009 19:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Química
Andamento: cursando

Re: Raizes de Polinômios

Mensagempor Cleyson007 » Sex Mai 22, 2009 08:49

Bom dia Gaby, tudo bem?

Entendi que você está querendo o seguinte:

Dado o polinômio p(x) = 4x³ - 4x² - 4x

P(x)² = 4x³ - 4x² - 4x + 6.

Quantas raizes o polinômio P(x)² possui?

Ele possui 3 raízes, pois seu grau é 3.

Tente colocar a questão usando o "Editor de Fórmulas", ok?

Bons estudos.

Um abraço
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Raizes de Polinômios

Mensagempor Molina » Sáb Mai 23, 2009 00:29

Cleyson007 escreveu:Bom dia Gaby, tudo bem?

Entendi que você está querendo o seguinte:

Dado o polinômio p(x) = 4x³ - 4x² - 4x

P(x)² = 4x³ - 4x² - 4x + 6.

Quantas raizes o polinômio P(x)² possui?

Ele possui 3 raízes, pois seu grau é 3.

Tente colocar a questão usando o "Editor de Fórmulas", ok?

Bons estudos.

Um abraço


Olá, Cleyson.
Acho que não é P(x)².
Ela chamou de P2(x) outro polinômio contendo o p(x),
ou seja, P2(x) = p(x) + 6 \Rightarrow (4x^3 - 4x^2 - 4x) + 6

Ok? Pelo menos foi isso que eu entendi.

Abraços, :y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D