por elizandro » Sáb Out 22, 2011 22:56
estou com duvida em um exercício de derivação eu não sei nem como começar a questão eh asssim:
Encontre todos os valores de x nos quais a reta tangente a curva dada satisfaz a propriedade enunciada.

;passa pela origem.
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por TheoFerraz » Sáb Out 22, 2011 23:16
Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de

o coeficiente angular.
uma reta seria dada pela equação:

sendo

um pto q a reta passa.
No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por elizandro » Sáb Out 22, 2011 23:20
TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de

o coeficiente angular.
uma reta seria dada pela equação:

sendo

um pto q a reta passa.
No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
entendi sim bah me ajudo um monte muito obrigado
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por elizandro » Sáb Out 22, 2011 23:49
elizandro escreveu:TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de

o coeficiente angular.
uma reta seria dada pela equação:

sendo

um pto q a reta passa.
No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por LuizAquino » Dom Out 23, 2011 10:34
elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
Você já sabe que a reta tangente ao gráfico de
f no ponto

é dada por:

Ou ainda, podemos escrever:

Para que essa reta passe pela origem, deve ocorrer:

Ou seja, já que

, precisamos resolver:

Sendo assim, basta resolver essa equação para descobrir todos os pontos

nos quais a reta tangente ao gráfico de
f passa pela origem.
Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por elizandro » Dom Out 23, 2011 22:27
LuizAquino escreveu:elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
Você já sabe que a reta tangente ao gráfico de
f no ponto

é dada por:

Ou ainda, podemos escrever:

Para que essa reta passe pela origem, deve ocorrer:

Ou seja, já que

, precisamos resolver:

Sendo assim, basta resolver essa equação para descobrir todos os pontos

nos quais a reta tangente ao gráfico de
f passa pela origem.
Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?
não fecha com a resposta que ta no livro -2
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por LuizAquino » Seg Out 24, 2011 11:38
elizandro escreveu:não fecha com a resposta que ta no livro -2
Por favor, envie o seu desenvolvimento para a equação dada anteriormente. Dessa forma, poderemos identificar onde você está errando.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [exercício de derivadas]
por elizandro » Dom Out 23, 2011 19:24
- 1 Respostas
- 1299 Exibições
- Última mensagem por LuizAquino

Seg Out 24, 2011 16:47
Cálculo: Limites, Derivadas e Integrais
-
- Exercicio de derivadas
por Jorge Luiz » Sex Mai 13, 2016 22:08
- 1 Respostas
- 2656 Exibições
- Última mensagem por adauto martins

Seg Mai 16, 2016 13:05
Cálculo: Limites, Derivadas e Integrais
-
- Exercício de derivadas - Guidorizzi
por -civil- » Qui Mai 19, 2011 10:26
- 2 Respostas
- 3903 Exibições
- Última mensagem por -civil-

Seg Mai 23, 2011 00:24
Cálculo: Limites, Derivadas e Integrais
-
- [cálculo de derivadas] Ajuda em exercicio
por Ljoe » Ter Jul 12, 2011 12:49
- 3 Respostas
- 2826 Exibições
- Última mensagem por Fabio Cabral

Qua Jul 13, 2011 10:52
Cálculo: Limites, Derivadas e Integrais
-
- [Aplicações Derivadas] Dúvida exercício
por MrJuniorFerr » Dom Out 21, 2012 14:57
- 6 Respostas
- 13246 Exibições
- Última mensagem por MrJuniorFerr

Dom Out 21, 2012 20:24
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.