• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Exercício de derivadas]

[Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 22:56

estou com duvida em um exercício de derivação eu não sei nem como começar a questão eh asssim:

Encontre todos os valores de x nos quais a reta tangente a curva dada satisfaz a propriedade enunciada.

y=\frac{1}{x+4} ;passa pela origem.
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor TheoFerraz » Sáb Out 22, 2011 23:16

Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 23:20

TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)



entendi sim bah me ajudo um monte muito obrigado
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 23:49

elizandro escreveu:
TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)


c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor LuizAquino » Dom Out 23, 2011 10:34

elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2


Você já sabe que a reta tangente ao gráfico de f no ponto (c, f(c)) é dada por:

y = f^{\prime}(c)(x-c) + f(c)

Ou ainda, podemos escrever:

y = f^{\prime}(c)x + f(c) - cf^\prime(c)

Para que essa reta passe pela origem, deve ocorrer:

f(c) - cf^\prime(c) = 0

Ou seja, já que f^{\prime}(x) = -\frac{1}{(x+4)^2}, precisamos resolver:

\frac{1}{c+4} + \frac{c}{(c+4)^2} = 0

Sendo assim, basta resolver essa equação para descobrir todos os pontos x = c nos quais a reta tangente ao gráfico de f passa pela origem.

Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Exercício de derivadas]

Mensagempor elizandro » Dom Out 23, 2011 22:27

LuizAquino escreveu:
elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2


Você já sabe que a reta tangente ao gráfico de f no ponto (c, f(c)) é dada por:

y = f^{\prime}(c)(x-c) + f(c)

Ou ainda, podemos escrever:

y = f^{\prime}(c)x + f(c) - cf^\prime(c)

Para que essa reta passe pela origem, deve ocorrer:

f(c) - cf^\prime(c) = 0

Ou seja, já que f^{\prime}(x) = -\frac{1}{(x+4)^2}, precisamos resolver:

\frac{1}{c+4} + \frac{c}{(c+4)^2} = 0

Sendo assim, basta resolver essa equação para descobrir todos os pontos x = c nos quais a reta tangente ao gráfico de f passa pela origem.

Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?


não fecha com a resposta que ta no livro -2
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor LuizAquino » Seg Out 24, 2011 11:38

elizandro escreveu:não fecha com a resposta que ta no livro -2


Por favor, envie o seu desenvolvimento para a equação dada anteriormente. Dessa forma, poderemos identificar onde você está errando.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59