por elizandro » Sáb Out 22, 2011 22:56
estou com duvida em um exercício de derivação eu não sei nem como começar a questão eh asssim:
Encontre todos os valores de x nos quais a reta tangente a curva dada satisfaz a propriedade enunciada.

;passa pela origem.
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por TheoFerraz » Sáb Out 22, 2011 23:16
Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de

o coeficiente angular.
uma reta seria dada pela equação:

sendo

um pto q a reta passa.
No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
-
TheoFerraz
- Colaborador Voluntário

-
- Mensagens: 107
- Registrado em: Qua Abr 13, 2011 19:23
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Física
- Andamento: cursando
por elizandro » Sáb Out 22, 2011 23:20
TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de

o coeficiente angular.
uma reta seria dada pela equação:

sendo

um pto q a reta passa.
No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
entendi sim bah me ajudo um monte muito obrigado
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por elizandro » Sáb Out 22, 2011 23:49
elizandro escreveu:TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de

o coeficiente angular.
uma reta seria dada pela equação:

sendo

um pto q a reta passa.
No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por LuizAquino » Dom Out 23, 2011 10:34
elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
Você já sabe que a reta tangente ao gráfico de
f no ponto

é dada por:

Ou ainda, podemos escrever:

Para que essa reta passe pela origem, deve ocorrer:

Ou seja, já que

, precisamos resolver:

Sendo assim, basta resolver essa equação para descobrir todos os pontos

nos quais a reta tangente ao gráfico de
f passa pela origem.
Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por elizandro » Dom Out 23, 2011 22:27
LuizAquino escreveu:elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
Você já sabe que a reta tangente ao gráfico de
f no ponto

é dada por:

Ou ainda, podemos escrever:

Para que essa reta passe pela origem, deve ocorrer:

Ou seja, já que

, precisamos resolver:

Sendo assim, basta resolver essa equação para descobrir todos os pontos

nos quais a reta tangente ao gráfico de
f passa pela origem.
Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?
não fecha com a resposta que ta no livro -2
-
elizandro
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Sáb Out 22, 2011 22:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: engenharia mecanica
- Andamento: cursando
por LuizAquino » Seg Out 24, 2011 11:38
elizandro escreveu:não fecha com a resposta que ta no livro -2
Por favor, envie o seu desenvolvimento para a equação dada anteriormente. Dessa forma, poderemos identificar onde você está errando.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [exercício de derivadas]
por elizandro » Dom Out 23, 2011 19:24
- 1 Respostas
- 1294 Exibições
- Última mensagem por LuizAquino

Seg Out 24, 2011 16:47
Cálculo: Limites, Derivadas e Integrais
-
- Exercicio de derivadas
por Jorge Luiz » Sex Mai 13, 2016 22:08
- 1 Respostas
- 2651 Exibições
- Última mensagem por adauto martins

Seg Mai 16, 2016 13:05
Cálculo: Limites, Derivadas e Integrais
-
- Exercício de derivadas - Guidorizzi
por -civil- » Qui Mai 19, 2011 10:26
- 2 Respostas
- 3890 Exibições
- Última mensagem por -civil-

Seg Mai 23, 2011 00:24
Cálculo: Limites, Derivadas e Integrais
-
- [cálculo de derivadas] Ajuda em exercicio
por Ljoe » Ter Jul 12, 2011 12:49
- 3 Respostas
- 2744 Exibições
- Última mensagem por Fabio Cabral

Qua Jul 13, 2011 10:52
Cálculo: Limites, Derivadas e Integrais
-
- [Aplicações Derivadas] Dúvida exercício
por MrJuniorFerr » Dom Out 21, 2012 14:57
- 6 Respostas
- 13184 Exibições
- Última mensagem por MrJuniorFerr

Dom Out 21, 2012 20:24
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.