• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Exercício de derivadas]

[Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 22:56

estou com duvida em um exercício de derivação eu não sei nem como começar a questão eh asssim:

Encontre todos os valores de x nos quais a reta tangente a curva dada satisfaz a propriedade enunciada.

y=\frac{1}{x+4} ;passa pela origem.
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor TheoFerraz » Sáb Out 22, 2011 23:16

Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 23:20

TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)



entendi sim bah me ajudo um monte muito obrigado
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 23:49

elizandro escreveu:
TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)


c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor LuizAquino » Dom Out 23, 2011 10:34

elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2


Você já sabe que a reta tangente ao gráfico de f no ponto (c, f(c)) é dada por:

y = f^{\prime}(c)(x-c) + f(c)

Ou ainda, podemos escrever:

y = f^{\prime}(c)x + f(c) - cf^\prime(c)

Para que essa reta passe pela origem, deve ocorrer:

f(c) - cf^\prime(c) = 0

Ou seja, já que f^{\prime}(x) = -\frac{1}{(x+4)^2}, precisamos resolver:

\frac{1}{c+4} + \frac{c}{(c+4)^2} = 0

Sendo assim, basta resolver essa equação para descobrir todos os pontos x = c nos quais a reta tangente ao gráfico de f passa pela origem.

Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Exercício de derivadas]

Mensagempor elizandro » Dom Out 23, 2011 22:27

LuizAquino escreveu:
elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2


Você já sabe que a reta tangente ao gráfico de f no ponto (c, f(c)) é dada por:

y = f^{\prime}(c)(x-c) + f(c)

Ou ainda, podemos escrever:

y = f^{\prime}(c)x + f(c) - cf^\prime(c)

Para que essa reta passe pela origem, deve ocorrer:

f(c) - cf^\prime(c) = 0

Ou seja, já que f^{\prime}(x) = -\frac{1}{(x+4)^2}, precisamos resolver:

\frac{1}{c+4} + \frac{c}{(c+4)^2} = 0

Sendo assim, basta resolver essa equação para descobrir todos os pontos x = c nos quais a reta tangente ao gráfico de f passa pela origem.

Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?


não fecha com a resposta que ta no livro -2
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor LuizAquino » Seg Out 24, 2011 11:38

elizandro escreveu:não fecha com a resposta que ta no livro -2


Por favor, envie o seu desenvolvimento para a equação dada anteriormente. Dessa forma, poderemos identificar onde você está errando.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D