• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Exercício de derivadas]

[Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 22:56

estou com duvida em um exercício de derivação eu não sei nem como começar a questão eh asssim:

Encontre todos os valores de x nos quais a reta tangente a curva dada satisfaz a propriedade enunciada.

y=\frac{1}{x+4} ;passa pela origem.
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor TheoFerraz » Sáb Out 22, 2011 23:16

Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)
TheoFerraz
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 107
Registrado em: Qua Abr 13, 2011 19:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Física
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 23:20

TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)



entendi sim bah me ajudo um monte muito obrigado
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor elizandro » Sáb Out 22, 2011 23:49

elizandro escreveu:
TheoFerraz escreveu:Assim,
Como escrevemos uma equação de reta ?
Nós precisamos de um ponto que ela passa e um coeficiente angular (obs, se isso não estiver claro avise-me.)
Vamos chamar de m o coeficiente angular.

uma reta seria dada pela equação:

f(x) = m \times \left( x - {x}_{0} \right) + f({x}_{0})

sendo {x}_{0} \;\;\ f({x}_{0}) um pto q a reta passa.

No caso de uma reta tangente, nós podemos interpretar o 'm' como a derivada da função naquele ponto, entao ficaria.

f(x) = f'( {x}_{0} ) \times \left( x - {x}_{0} \right) + f({x}_{0})

a ideia é, construa essa equação usando a função dada e verifique se a reta passa pela origem, em outras palavras se f(0)=0

(Obs, como eu não estou com mto tempo eu respondi meio acoxambrado, esperando que voce soubesse já diversas coisas dessas, o por que desse coeficiente angular, essa derivada, ou melhor, o porque dessa equação geral pra retas existe e é compreensível, o mesmo pra derivada ser o coeficiente angular no caso duma tg. se isso não estiver claro eu explico.)


c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor LuizAquino » Dom Out 23, 2011 10:34

elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2


Você já sabe que a reta tangente ao gráfico de f no ponto (c, f(c)) é dada por:

y = f^{\prime}(c)(x-c) + f(c)

Ou ainda, podemos escrever:

y = f^{\prime}(c)x + f(c) - cf^\prime(c)

Para que essa reta passe pela origem, deve ocorrer:

f(c) - cf^\prime(c) = 0

Ou seja, já que f^{\prime}(x) = -\frac{1}{(x+4)^2}, precisamos resolver:

\frac{1}{c+4} + \frac{c}{(c+4)^2} = 0

Sendo assim, basta resolver essa equação para descobrir todos os pontos x = c nos quais a reta tangente ao gráfico de f passa pela origem.

Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Exercício de derivadas]

Mensagempor elizandro » Dom Out 23, 2011 22:27

LuizAquino escreveu:
elizandro escreveu:c puder fazer o calculo pra mim que eu tentei fazer mas n fecha o resultado q é -2


Você já sabe que a reta tangente ao gráfico de f no ponto (c, f(c)) é dada por:

y = f^{\prime}(c)(x-c) + f(c)

Ou ainda, podemos escrever:

y = f^{\prime}(c)x + f(c) - cf^\prime(c)

Para que essa reta passe pela origem, deve ocorrer:

f(c) - cf^\prime(c) = 0

Ou seja, já que f^{\prime}(x) = -\frac{1}{(x+4)^2}, precisamos resolver:

\frac{1}{c+4} + \frac{c}{(c+4)^2} = 0

Sendo assim, basta resolver essa equação para descobrir todos os pontos x = c nos quais a reta tangente ao gráfico de f passa pela origem.

Foi uma equação como essa que você resolveu? Qual foi o seu desenvolvimento?


não fecha com a resposta que ta no livro -2
elizandro
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sáb Out 22, 2011 22:33
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecanica
Andamento: cursando

Re: [Exercício de derivadas]

Mensagempor LuizAquino » Seg Out 24, 2011 11:38

elizandro escreveu:não fecha com a resposta que ta no livro -2


Por favor, envie o seu desenvolvimento para a equação dada anteriormente. Dessa forma, poderemos identificar onde você está errando.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.