por maykonnunes » Qui Set 15, 2011 23:54
Encontre a área da superfície formada oela rotação, ao rdor do eixo x, do gráfico da função
![f(x)= a. cosh\frac{x}{a} ,/ x\epsilon[0,a] f(x)= a. cosh\frac{x}{a} ,/ x\epsilon[0,a]](/latexrender/pictures/dee6474fa65c3b4a6c39e54d8c8531a7.png)
-
maykonnunes
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 02:35
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Sáb Set 17, 2011 20:27
maykonnunes escreveu:Encontre a área da superfície formada pela rotação, ao redor do eixo x, do gráfico da função

,
![x\in [0,a] x\in [0,a]](/latexrender/pictures/a2e0a7db6b58ff7d7b743cc581bf12b3.png)
Dos conhecimentos de Cálculo, sabemos que a área da superfície obtida será dada por
![S = \int_{0}^{a} 2\pi f(x) \sqrt{1 + [f^\prime(x)]^2}\,dx S = \int_{0}^{a} 2\pi f(x) \sqrt{1 + [f^\prime(x)]^2}\,dx](/latexrender/pictures/fd3416f8ca23636de00b3734a78844c3.png)
Por definição, o
cosseno hiperbólico (representado por

) é definido como:

Sendo assim, temos que:

Note que podemos escrever:

Considerando essas informações, tente terminar o exercício.
ObservaçãoPor definição, o
seno hiperbólico (representado por

) é definido como:

Desse maneira, temos que:
(i)
![[\cosh u]^\prime = \textrm{senh}\, u [\cosh u]^\prime = \textrm{senh}\, u](/latexrender/pictures/f22768b9f29e98207b507f554673cf07.png)
(ii)
![[\textrm{senh}\, u]^\prime = \cosh u [\textrm{senh}\, u]^\prime = \cosh u](/latexrender/pictures/53536557cb2a98b2f13ab397339f2452.png)
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Faby » Qua Set 21, 2011 17:56
...estou tentando continuar a resolução, fiz mudançã de variável, mas não consigo encontrar a v onde dv é (e^x/a + e^-x/a)/2 dx
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Faby » Sex Set 23, 2011 14:11
...cheguei ao seguinte resultado:

será que acertei??
-
Faby
- Usuário Ativo

-
- Mensagens: 16
- Registrado em: Qua Abr 27, 2011 10:15
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por LuizAquino » Sáb Set 24, 2011 00:39
Considerando as informações que postei anteriormente e usando a Regra da Cadeia, note que:

Além disso, também temos que:

Portanto, precisamos apenas calcular a integral:

Utilizando as definições apresentadas anteriormente, é fácil verificar que é válida a identidade

.
Podemos então reescrever o integrando como:

Agora basta resolver essas duas integrais. Vale lembrar que na segunda delas podemos aplicar a substituição

e

.
No final, o resultado será:

-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Área - Na próxima figura ABCD é um quadrilátero de área 200
por marguiene » Sex Out 10, 2014 10:22
- 0 Respostas
- 2052 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:22
Geometria Plana
-
- Área - Na figura abaixo ABCD é um retângulo de área 11 cm².
por marguiene » Sex Out 10, 2014 10:35
- 0 Respostas
- 2817 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:35
Geometria Plana
-
- como calcular o volume da figura
por eliane e rodrigo » Seg Ago 23, 2010 22:33
- 2 Respostas
- 2008 Exibições
- Última mensagem por eliane e rodrigo

Ter Ago 24, 2010 16:45
Geometria Espacial
-
- Calcular lado de uma figura formada por uma recta paralela
por LBT » Dom Dez 05, 2010 17:22
- 2 Respostas
- 1882 Exibições
- Última mensagem por LBT

Seg Dez 06, 2010 05:35
Geometria Analítica
-
- Área - Na figura abaixo D, E, F, G são pontos médios. Determ
por marguiene » Sex Out 10, 2014 10:00
- 0 Respostas
- 2355 Exibições
- Última mensagem por marguiene

Sex Out 10, 2014 10:00
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.