• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada - calcular a area da figura rotacionada

Derivada - calcular a area da figura rotacionada

Mensagempor maykonnunes » Qui Set 15, 2011 23:54

Encontre a área da superfície formada oela rotação, ao rdor do eixo x, do gráfico da função
f(x)= a. cosh\frac{x}{a} ,/ x\epsilon[0,a]
maykonnunes
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 02:35
Formação Escolar: GRADUAÇÃO
Área/Curso: matematica
Andamento: cursando

Re: Derivada - calcular a area da figura rotacionada

Mensagempor LuizAquino » Sáb Set 17, 2011 20:27

maykonnunes escreveu:Encontre a área da superfície formada pela rotação, ao redor do eixo x, do gráfico da função
f(x)= a\cosh\frac{x}{a}, x\in [0,a]


Dos conhecimentos de Cálculo, sabemos que a área da superfície obtida será dada por

S = \int_{0}^{a} 2\pi f(x) \sqrt{1 + [f^\prime(x)]^2}\,dx

Por definição, o cosseno hiperbólico (representado por \cosh) é definido como:

\cosh u = \frac{e^u + e^{-u}}{2}

Sendo assim, temos que:
g(u) = \cosh u \Rightarrow g^\prime (u) =  \frac{e^u - e^{-u}}{2}

Note que podemos escrever:

\sqrt{1 + [g^\prime(u)]^2} = \sqrt{1 + \left(\frac{e^u - e^{-u}}{2}\right)^2} = \sqrt{1 + \frac{(e^u)^2 - 2(e^u)(e^{-u}) + (e^{-u})^2}{4}} = \sqrt{\frac{(e^u)^2 + 2 + (e^{-u})^2}{4}} = \sqrt{\frac{(e^u + e^{-u})^2}{4}} = \frac{e^u + e^{-u}}{2}

Considerando essas informações, tente terminar o exercício.

Observação
Por definição, o seno hiperbólico (representado por \textrm{senh}) é definido como:

\textrm{senh}\, u = \frac{e^u - e^{-u}}{2}

Desse maneira, temos que:

(i) [\cosh u]^\prime = \textrm{senh}\, u

(ii) [\textrm{senh}\, u]^\prime = \cosh u
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Derivada - calcular a area da figura rotacionada

Mensagempor Faby » Qua Set 21, 2011 17:56

...estou tentando continuar a resolução, fiz mudançã de variável, mas não consigo encontrar a v onde dv é (e^x/a + e^-x/a)/2 dx
Faby
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 10:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada - calcular a area da figura rotacionada

Mensagempor Faby » Sex Set 23, 2011 14:11

...cheguei ao seguinte resultado:




será que acertei??
Faby
Usuário Ativo
Usuário Ativo
 
Mensagens: 16
Registrado em: Qua Abr 27, 2011 10:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Derivada - calcular a area da figura rotacionada

Mensagempor LuizAquino » Sáb Set 24, 2011 00:39

Considerando as informações que postei anteriormente e usando a Regra da Cadeia, note que:

f(x) = a\cosh \frac{x}{a} \Rightarrow f^\prime (x) = a\left(\,\textrm{senh}\,\frac{x}{a}\right)\left(\frac{x}{a}\right)^\prime = \,\textrm{senh}\,\frac{x}{a}

Além disso, também temos que:

\sqrt{1 + \left(\,\textrm{senh}\,\frac{x}{a}\right)^2} = \cosh \frac{x}{a}

Portanto, precisamos apenas calcular a integral:

S = \int_{0}^{a} 2\pi  a\cosh^2 \frac{x}{a}\,dx

Utilizando as definições apresentadas anteriormente, é fácil verificar que é válida a identidade \cosh^2 u = \frac{1}{2}(1 + \cosh 2u) .

Podemos então reescrever o integrando como:

S = \int_{0}^{a} \pi a \left(1 + \cosh \frac{2x}{a}\right)\,dx =  \int_{0}^{a} \pi a \,dx + \int_{0}^{a} \pi a \cosh \frac{2x}{a}\,dx

Agora basta resolver essas duas integrais. Vale lembrar que na segunda delas podemos aplicar a substituição u = \frac{2x}{a} e du = \frac{2}{a}\,dx .

No final, o resultado será:

S = \pi a^2 \left(1 + \frac{1}{2}\,\textrm{senh}\, 2\right)
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: