• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Notaveis

Produto Notaveis

Mensagempor LuizCarlos » Ter Ago 02, 2011 16:12

Produto Notaveis

Mensagempor Genilsonn » Ter 02 Ago, 2011 15:01
Resolvi esse produto notavel:

(3a + \sqrt[]{3})^2 = 3a^2 + 2.3a.\sqrt[]{3} + (\sqrt[]{3})^2 = 9a^2 + 6a.\sqrt[]{3} + 3

Só que no livro observei que a respota é :

(3a + \sqrt[]{3})^2 = 3a^2 + 2.3a.\sqrt[]{3} + (\sqrt[]{3})^2 = 9a^2 + 6.\sqrt[]{3a} + 3

Porque o radicando ficou com valor 6.\sqrt[]{3a}

Não entendi.

Alguem me explique fazendo o favor? agradesço.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Produto Notaveis

Mensagempor MarceloFantini » Ter Ago 02, 2011 17:49

Acredito que o gabarito esteja errado, sua resolução está correta. Porém, não se esqueça dos parênteses: 3a^2 \neq (3a)^2 = 9a^2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Produto Notaveis

Mensagempor Claudin » Qua Ago 03, 2011 02:13

Caso tenha dificuldade em como, explorar este recurso de produtos notáveis, vou lhe apresentar alguns:

Neste link. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Produto Notaveis

Mensagempor LuizCarlos » Qua Ago 03, 2011 15:40

MarceloFantini escreveu:Acredito que o gabarito esteja errado, sua resolução está correta. Porém, não se esqueça dos parênteses: 3a^2 \neq (3a)^2 = 9a^2.


Deixa eu ver si eu entendi, voce diz que 3a^2\neq (3a)^2 porque si fosse - 3a^2 = - 3a. 3a = - 9a^2 ?  e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 é isso ?
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Produto Notaveis

Mensagempor Claudin » Qua Ago 03, 2011 15:52

LuizCarlos escreveu:Deixa eu ver si eu entendi, voce diz que 3a^2\neq (3a)^2 porque si fosse - 3a^2 = - 3a. 3a = - 9a^2 ?  e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 é isso ?



Seria o seguinte:

3a^2=3.a.a \neq (3a)^2= 9a^2

Vendo outro caso:

-3(a^2)=-3.a.a \neq (-3a)^2= 9a^2
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Produto Notaveis

Mensagempor LuizCarlos » Qui Ago 04, 2011 00:57

Claudin escreveu:
LuizCarlos escreveu:Deixa eu ver si eu entendi, voce diz que 3a^2\neq (3a)^2 porque si fosse - 3a^2 = - 3a. 3a = - 9a^2 ?  e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 é isso ?



Seria o seguinte:

3a^2=3.a.a \neq (3a)^2= 9a^2

Vendo outro caso:

-3(a^2)=-3.a.a \neq (-3a)^2= 9a^2


Entendi agora Claudin, perfeito, muito obrigado.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Produto Notaveis

Mensagempor Claudin » Qui Ago 04, 2011 03:00

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}