por LuizCarlos » Ter Ago 02, 2011 16:12
Produto Notaveis
Mensagempor Genilsonn » Ter 02 Ago, 2011 15:01
Resolvi esse produto notavel:
![(3a + \sqrt[]{3})^2 = 3a^2 + 2.3a.\sqrt[]{3} + (\sqrt[]{3})^2 = 9a^2 + 6a.\sqrt[]{3} + 3 (3a + \sqrt[]{3})^2 = 3a^2 + 2.3a.\sqrt[]{3} + (\sqrt[]{3})^2 = 9a^2 + 6a.\sqrt[]{3} + 3](/latexrender/pictures/47d6f788233e3cbcc8cd30f28627f897.png)
Só que no livro observei que a respota é :
![(3a + \sqrt[]{3})^2 = 3a^2 + 2.3a.\sqrt[]{3} + (\sqrt[]{3})^2 = 9a^2 + 6.\sqrt[]{3a} + 3 (3a + \sqrt[]{3})^2 = 3a^2 + 2.3a.\sqrt[]{3} + (\sqrt[]{3})^2 = 9a^2 + 6.\sqrt[]{3a} + 3](/latexrender/pictures/e422ccad8854031aaf8fa09cabc6bcd3.png)
Porque o radicando ficou com valor
![6.\sqrt[]{3a} 6.\sqrt[]{3a}](/latexrender/pictures/37c04cedaf649fea73ce5f4c475b01cb.png)
Não entendi.
Alguem me explique fazendo o favor? agradesço.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por MarceloFantini » Ter Ago 02, 2011 17:49
Acredito que o gabarito esteja errado, sua resolução está correta. Porém, não se esqueça dos parênteses:

.
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por Claudin » Qua Ago 03, 2011 02:13
Caso tenha dificuldade em como, explorar este recurso de produtos notáveis, vou lhe apresentar alguns:
Neste link.

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizCarlos » Qua Ago 03, 2011 15:40
MarceloFantini escreveu:Acredito que o gabarito esteja errado, sua resolução está correta. Porém, não se esqueça dos parênteses:

.
Deixa eu ver si eu entendi, voce diz que

porque si fosse
![- 3a^2 = - 3a. 3a = - 9a^2 ? e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 - 3a^2 = - 3a. 3a = - 9a^2 ? e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2](/latexrender/pictures/94971682b2dc5067c4bfa186ae50682a.png)
é isso ?
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por Claudin » Qua Ago 03, 2011 15:52
LuizCarlos escreveu:Deixa eu ver si eu entendi, voce diz que

porque si fosse
![- 3a^2 = - 3a. 3a = - 9a^2 ? e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 - 3a^2 = - 3a. 3a = - 9a^2 ? e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2](/latexrender/pictures/94971682b2dc5067c4bfa186ae50682a.png)
é isso ?
Seria o seguinte:

Vendo outro caso:

"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizCarlos » Qui Ago 04, 2011 00:57
Claudin escreveu:LuizCarlos escreveu:Deixa eu ver si eu entendi, voce diz que

porque si fosse
![- 3a^2 = - 3a. 3a = - 9a^2 ? e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 - 3a^2 = - 3a. 3a = - 9a^2 ? e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2](/latexrender/pictures/94971682b2dc5067c4bfa186ae50682a.png)
é isso ?
Seria o seguinte:

Vendo outro caso:

Entendi agora Claudin, perfeito, muito obrigado.
-
LuizCarlos
- Colaborador Voluntário

-
- Mensagens: 254
- Registrado em: Ter Jun 21, 2011 20:39
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: 1º ano do segundo grau
- Andamento: cursando
por Claudin » Qui Ago 04, 2011 03:00
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Produto Notáveis
por Flavio Cacequi » Sex Mar 30, 2018 20:55
- 1 Respostas
- 3278 Exibições
- Última mensagem por Gebe

Sáb Mar 31, 2018 13:21
Álgebra Elementar
-
- Produto escalar, Produto Vetorial e Produto Misto
por fernando7 » Qua Mai 23, 2018 17:29
- 0 Respostas
- 4646 Exibições
- Última mensagem por fernando7

Qua Mai 23, 2018 17:29
Geometria Analítica
-
- Limites Notáveis
por spoof » Qui Out 14, 2010 11:23
- 2 Respostas
- 4957 Exibições
- Última mensagem por spoof

Sex Out 15, 2010 14:20
Cálculo: Limites, Derivadas e Integrais
-
- Produtos Notáveis
por Du21 » Ter Mar 29, 2011 20:31
- 2 Respostas
- 2144 Exibições
- Última mensagem por Du21

Ter Mar 29, 2011 21:02
Álgebra Elementar
-
- Quadriláteros notáveis
por Jean Cigari » Qua Jun 22, 2011 11:26
- 2 Respostas
- 14700 Exibições
- Última mensagem por Jean Cigari

Qua Jun 22, 2011 22:30
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.