• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Produto Notaveis

Produto Notaveis

Mensagempor LuizCarlos » Ter Ago 02, 2011 16:12

Produto Notaveis

Mensagempor Genilsonn » Ter 02 Ago, 2011 15:01
Resolvi esse produto notavel:

(3a + \sqrt[]{3})^2 = 3a^2 + 2.3a.\sqrt[]{3} + (\sqrt[]{3})^2 = 9a^2 + 6a.\sqrt[]{3} + 3

Só que no livro observei que a respota é :

(3a + \sqrt[]{3})^2 = 3a^2 + 2.3a.\sqrt[]{3} + (\sqrt[]{3})^2 = 9a^2 + 6.\sqrt[]{3a} + 3

Porque o radicando ficou com valor 6.\sqrt[]{3a}

Não entendi.

Alguem me explique fazendo o favor? agradesço.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Produto Notaveis

Mensagempor MarceloFantini » Ter Ago 02, 2011 17:49

Acredito que o gabarito esteja errado, sua resolução está correta. Porém, não se esqueça dos parênteses: 3a^2 \neq (3a)^2 = 9a^2.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Produto Notaveis

Mensagempor Claudin » Qua Ago 03, 2011 02:13

Caso tenha dificuldade em como, explorar este recurso de produtos notáveis, vou lhe apresentar alguns:

Neste link. :y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Produto Notaveis

Mensagempor LuizCarlos » Qua Ago 03, 2011 15:40

MarceloFantini escreveu:Acredito que o gabarito esteja errado, sua resolução está correta. Porém, não se esqueça dos parênteses: 3a^2 \neq (3a)^2 = 9a^2.


Deixa eu ver si eu entendi, voce diz que 3a^2\neq (3a)^2 porque si fosse - 3a^2 = - 3a. 3a = - 9a^2 ?  e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 é isso ?
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Produto Notaveis

Mensagempor Claudin » Qua Ago 03, 2011 15:52

LuizCarlos escreveu:Deixa eu ver si eu entendi, voce diz que 3a^2\neq (3a)^2 porque si fosse - 3a^2 = - 3a. 3a = - 9a^2 ?  e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 é isso ?



Seria o seguinte:

3a^2=3.a.a \neq (3a)^2= 9a^2

Vendo outro caso:

-3(a^2)=-3.a.a \neq (-3a)^2= 9a^2
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Produto Notaveis

Mensagempor LuizCarlos » Qui Ago 04, 2011 00:57

Claudin escreveu:
LuizCarlos escreveu:Deixa eu ver si eu entendi, voce diz que 3a^2\neq (3a)^2 porque si fosse - 3a^2 = - 3a. 3a = - 9a^2 ?  e se fosse [tex] (- 3a)^2 = (- 3a).(-3a) = 9a^2 é isso ?



Seria o seguinte:

3a^2=3.a.a \neq (3a)^2= 9a^2

Vendo outro caso:

-3(a^2)=-3.a.a \neq (-3a)^2= 9a^2


Entendi agora Claudin, perfeito, muito obrigado.
LuizCarlos
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 254
Registrado em: Ter Jun 21, 2011 20:39
Formação Escolar: ENSINO MÉDIO
Área/Curso: 1º ano do segundo grau
Andamento: cursando

Re: Produto Notaveis

Mensagempor Claudin » Qui Ago 04, 2011 03:00

:y:
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}