por alexandreredefor » Sex Jul 15, 2011 16:51
sejam f e g funções tais que

, onde k é uma constante e

. Prove que

Editado pela última vez por
alexandreredefor em Sex Jul 15, 2011 21:10, em um total de 1 vez.
-
alexandreredefor
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jul 15, 2011 10:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Sex Jul 15, 2011 17:05
O que você já tentou fazer? Onde está exatamente a sua dúvida?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alexandreredefor » Sex Jul 15, 2011 17:18
não sei por onde começar sera que posso usar a propriedade
-
alexandreredefor
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jul 15, 2011 10:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Sex Jul 15, 2011 17:52
Se já tiver sido provado as propriedades operatórios dos limites, então basta utilizá-las.
Caso contrário, você terá que provar usando a definição de limites.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por LuizAquino » Sex Jul 15, 2011 21:29
Vejamos como fazer utilizando as definições de limites.
Eu vou considerar que o símbolo

significa

.
Temos duas hipótese:
(i)

Por definição: para todo

, existe

tal que

sempre que

.
(ii)

Por definição: para todo

, existe

tal que

sempre que

.
A tese será:
(iii)

Por definição: para todo

, existe

tal que

sempre que

.
DemonstraçãoSeja

. Considere o número

.
Se

, então pela hipótese (ii) existe

tal que

sempre que

.
Se

, então pela hipótese (ii) existe

tal que

sempre que

. Mas como

, temos que

.
Por outro lado, sabemos que 1 é um número positivo. Portanto, pela hipótese (i) existe

tal que

sempre que

. Mas de

, nós obtemos que

. Ou seja, temos que

.
Tome

. Pelo que foi exposto acima, temos que para esse número

as duas inequações abaixo vão ocorrer sempre que

:
(1)

(2)

Somando (1) e (2), obtemos

.
Pela hipótese (ii), nas proximidade de
a a função
g é tal que
g > 0.
Além disso, perceba que das duas hipóteses podemos concluir que nas proximidade de
a as funções
f e
g são tais que
g >>
f (isto é,
g é muito maior do que
f).
Desse modo, teremos que nas proximidades de
a irá ocorrer |
f +
g| =
f +
g.
Logo, obtemos que

.
#
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Sex Jul 15, 2011 22:04
Luiz, seria interessante mostrar porque da escolha de

, para que não pareça que "caiu do céu".
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sex Jul 15, 2011 22:12
MarceloFantini escreveu:Luiz, seria interessante mostrar porque da escolha de

, para que não pareça que "caiu do céu".
O artifício de tomar esse número leva em consideração o pensamento de que no final precisamos realizar uma soma entre inequações do tipo

e

de modo a obter

. Sendo assim, precisamos construir uma estratégia de modo que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prova - dúvida
por marinalcd » Sex Fev 21, 2014 20:48
- 1 Respostas
- 840 Exibições
- Última mensagem por DanielFerreira

Sex Fev 21, 2014 22:15
Cálculo: Limites, Derivadas e Integrais
-
- duvida de uma prova AJUDEM
por lais_banestes » Qua Mai 16, 2012 21:45
- 0 Respostas
- 1087 Exibições
- Última mensagem por lais_banestes

Qua Mai 16, 2012 21:45
Estatística
-
- Questão prova concurso (dúvida)
por fernandocez » Seg Mar 14, 2011 21:35
- 5 Respostas
- 2497 Exibições
- Última mensagem por fernandocez

Qua Mar 16, 2011 00:16
Logaritmos
-
- Dúvida de P.A (Exercício prova SENAI)
por Bia_Oliveira » Qua Set 26, 2012 09:53
- 2 Respostas
- 2221 Exibições
- Última mensagem por Bia_Oliveira

Dom Set 30, 2012 11:45
Progressões
-
- Questão prova concurso (dúvida na resposta)
por fernandocez » Qua Mar 16, 2011 13:47
- 3 Respostas
- 2796 Exibições
- Última mensagem por fernandocez

Qua Mar 16, 2011 23:36
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.