por alexandreredefor » Sex Jul 15, 2011 16:51
sejam f e g funções tais que

, onde k é uma constante e

. Prove que

Editado pela última vez por
alexandreredefor em Sex Jul 15, 2011 21:10, em um total de 1 vez.
-
alexandreredefor
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jul 15, 2011 10:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Sex Jul 15, 2011 17:05
O que você já tentou fazer? Onde está exatamente a sua dúvida?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alexandreredefor » Sex Jul 15, 2011 17:18
não sei por onde começar sera que posso usar a propriedade
-
alexandreredefor
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jul 15, 2011 10:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Sex Jul 15, 2011 17:52
Se já tiver sido provado as propriedades operatórios dos limites, então basta utilizá-las.
Caso contrário, você terá que provar usando a definição de limites.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por LuizAquino » Sex Jul 15, 2011 21:29
Vejamos como fazer utilizando as definições de limites.
Eu vou considerar que o símbolo

significa

.
Temos duas hipótese:
(i)

Por definição: para todo

, existe

tal que

sempre que

.
(ii)

Por definição: para todo

, existe

tal que

sempre que

.
A tese será:
(iii)

Por definição: para todo

, existe

tal que

sempre que

.
DemonstraçãoSeja

. Considere o número

.
Se

, então pela hipótese (ii) existe

tal que

sempre que

.
Se

, então pela hipótese (ii) existe

tal que

sempre que

. Mas como

, temos que

.
Por outro lado, sabemos que 1 é um número positivo. Portanto, pela hipótese (i) existe

tal que

sempre que

. Mas de

, nós obtemos que

. Ou seja, temos que

.
Tome

. Pelo que foi exposto acima, temos que para esse número

as duas inequações abaixo vão ocorrer sempre que

:
(1)

(2)

Somando (1) e (2), obtemos

.
Pela hipótese (ii), nas proximidade de
a a função
g é tal que
g > 0.
Além disso, perceba que das duas hipóteses podemos concluir que nas proximidade de
a as funções
f e
g são tais que
g >>
f (isto é,
g é muito maior do que
f).
Desse modo, teremos que nas proximidades de
a irá ocorrer |
f +
g| =
f +
g.
Logo, obtemos que

.
#
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Sex Jul 15, 2011 22:04
Luiz, seria interessante mostrar porque da escolha de

, para que não pareça que "caiu do céu".
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sex Jul 15, 2011 22:12
MarceloFantini escreveu:Luiz, seria interessante mostrar porque da escolha de

, para que não pareça que "caiu do céu".
O artifício de tomar esse número leva em consideração o pensamento de que no final precisamos realizar uma soma entre inequações do tipo

e

de modo a obter

. Sendo assim, precisamos construir uma estratégia de modo que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prova - dúvida
por marinalcd » Sex Fev 21, 2014 20:48
- 1 Respostas
- 835 Exibições
- Última mensagem por DanielFerreira

Sex Fev 21, 2014 22:15
Cálculo: Limites, Derivadas e Integrais
-
- duvida de uma prova AJUDEM
por lais_banestes » Qua Mai 16, 2012 21:45
- 0 Respostas
- 1076 Exibições
- Última mensagem por lais_banestes

Qua Mai 16, 2012 21:45
Estatística
-
- Questão prova concurso (dúvida)
por fernandocez » Seg Mar 14, 2011 21:35
- 5 Respostas
- 2463 Exibições
- Última mensagem por fernandocez

Qua Mar 16, 2011 00:16
Logaritmos
-
- Dúvida de P.A (Exercício prova SENAI)
por Bia_Oliveira » Qua Set 26, 2012 09:53
- 2 Respostas
- 2199 Exibições
- Última mensagem por Bia_Oliveira

Dom Set 30, 2012 11:45
Progressões
-
- Questão prova concurso (dúvida na resposta)
por fernandocez » Qua Mar 16, 2011 13:47
- 3 Respostas
- 2769 Exibições
- Última mensagem por fernandocez

Qua Mar 16, 2011 23:36
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.