por alexandreredefor » Sex Jul 15, 2011 16:51
sejam f e g funções tais que

, onde k é uma constante e

. Prove que

Editado pela última vez por
alexandreredefor em Sex Jul 15, 2011 21:10, em um total de 1 vez.
-
alexandreredefor
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jul 15, 2011 10:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Sex Jul 15, 2011 17:05
O que você já tentou fazer? Onde está exatamente a sua dúvida?
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por alexandreredefor » Sex Jul 15, 2011 17:18
não sei por onde começar sera que posso usar a propriedade
-
alexandreredefor
- Novo Usuário

-
- Mensagens: 9
- Registrado em: Sex Jul 15, 2011 10:04
- Formação Escolar: GRADUAÇÃO
- Área/Curso: matematica
- Andamento: cursando
por LuizAquino » Sex Jul 15, 2011 17:52
Se já tiver sido provado as propriedades operatórios dos limites, então basta utilizá-las.
Caso contrário, você terá que provar usando a definição de limites.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por LuizAquino » Sex Jul 15, 2011 21:29
Vejamos como fazer utilizando as definições de limites.
Eu vou considerar que o símbolo

significa

.
Temos duas hipótese:
(i)

Por definição: para todo

, existe

tal que

sempre que

.
(ii)

Por definição: para todo

, existe

tal que

sempre que

.
A tese será:
(iii)

Por definição: para todo

, existe

tal que

sempre que

.
DemonstraçãoSeja

. Considere o número

.
Se

, então pela hipótese (ii) existe

tal que

sempre que

.
Se

, então pela hipótese (ii) existe

tal que

sempre que

. Mas como

, temos que

.
Por outro lado, sabemos que 1 é um número positivo. Portanto, pela hipótese (i) existe

tal que

sempre que

. Mas de

, nós obtemos que

. Ou seja, temos que

.
Tome

. Pelo que foi exposto acima, temos que para esse número

as duas inequações abaixo vão ocorrer sempre que

:
(1)

(2)

Somando (1) e (2), obtemos

.
Pela hipótese (ii), nas proximidade de
a a função
g é tal que
g > 0.
Além disso, perceba que das duas hipóteses podemos concluir que nas proximidade de
a as funções
f e
g são tais que
g >>
f (isto é,
g é muito maior do que
f).
Desse modo, teremos que nas proximidades de
a irá ocorrer |
f +
g| =
f +
g.
Logo, obtemos que

.
#
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por MarceloFantini » Sex Jul 15, 2011 22:04
Luiz, seria interessante mostrar porque da escolha de

, para que não pareça que "caiu do céu".
Futuro MATEMÁTICO
-
MarceloFantini
- Colaborador Moderador

-
- Mensagens: 3126
- Registrado em: Seg Dez 14, 2009 11:41
- Formação Escolar: GRADUAÇÃO
- Andamento: formado
por LuizAquino » Sex Jul 15, 2011 22:12
MarceloFantini escreveu:Luiz, seria interessante mostrar porque da escolha de

, para que não pareça que "caiu do céu".
O artifício de tomar esse número leva em consideração o pensamento de que no final precisamos realizar uma soma entre inequações do tipo

e

de modo a obter

. Sendo assim, precisamos construir uma estratégia de modo que

.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Prova - dúvida
por marinalcd » Sex Fev 21, 2014 20:48
- 1 Respostas
- 835 Exibições
- Última mensagem por DanielFerreira

Sex Fev 21, 2014 22:15
Cálculo: Limites, Derivadas e Integrais
-
- duvida de uma prova AJUDEM
por lais_banestes » Qua Mai 16, 2012 21:45
- 0 Respostas
- 1076 Exibições
- Última mensagem por lais_banestes

Qua Mai 16, 2012 21:45
Estatística
-
- Questão prova concurso (dúvida)
por fernandocez » Seg Mar 14, 2011 21:35
- 5 Respostas
- 2463 Exibições
- Última mensagem por fernandocez

Qua Mar 16, 2011 00:16
Logaritmos
-
- Dúvida de P.A (Exercício prova SENAI)
por Bia_Oliveira » Qua Set 26, 2012 09:53
- 2 Respostas
- 2199 Exibições
- Última mensagem por Bia_Oliveira

Dom Set 30, 2012 11:45
Progressões
-
- Questão prova concurso (dúvida na resposta)
por fernandocez » Qua Mar 16, 2011 13:47
- 3 Respostas
- 2769 Exibições
- Última mensagem por fernandocez

Qua Mar 16, 2011 23:36
Geometria Plana
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.