• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Mai 31, 2011 12:17

\lim_{x\rightarrow0} \frac{\sqrt[]{x+2}-\sqrt[]{2}}{x}

Gostaria de saber qual o valor correto da resolução. Seria \frac{1}{4} ?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor stuart clark » Ter Mai 31, 2011 13:59

\lim_{x\rightarrow0} \frac{\sqrt[]{x+2}-\sqrt[]{2}}{x} = \lim_{x\rightarrow \0}\frac{\left(\sqrt{x+2}-\sqrt{2}\right)}{x}.\frac{\left(\sqrt{x+2}+\sqrt{2}\right)}{\left(\sqrt{x+2}+\sqrt{2}\right)} = \frac{1}{2\sqrt{2}}
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Mai 31, 2011 15:21

stuart clark escreveu:\lim_{x\rightarrow0} \frac{\sqrt[]{x+2}-\sqrt[]{2}}{x} = \lim_{x\rightarrow \0}\frac{\left(\sqrt{x+2}-\sqrt{2}\right)}{x}.\frac{\left(\sqrt{x+2}+\sqrt{2}\right)}{\left(\sqrt{x+2}+\sqrt{2}\right)} = \frac{1}{2\sqrt{2}}



Resolvi de outro modo

\lim_{x\rightarrow0}\frac{\sqrt[]{x+2}-\sqrt[]{2}}{x} \Rightarrow \lim_{x\rightarrow0}\frac{\sqrt[]{x+2}-\sqrt[]{2}}{x}. \frac{\sqrt[]{x+2}+\sqrt[]{2}}{\sqrt[]{x+2}+\sqrt[]{2}}

\Rightarrow\lim_{x\rightarrow0}\frac{x+2-2}{x(\sqrt[]{x+2}+\sqrt[]{2})}\Rightarrow\lim_{x\rightarrow0}\frac{x}{x(\sqrt[]{x+2}+\sqrt[]{2})}\Rightarrow\lim_{x\rightarrow0}\frac{(1)^2}{(\sqrt[]{x+2})^2+(\sqrt[]{2})^2}

\Rightarrow\lim_{x\rightarrow0}=\frac{1}{4}

Mas tive dúvida quando elevei o denominador ao quadrado, fiquei na dúvida se era somente
para retirar as raizes ou fazer produto notavel (quadrado do primeiro mais 2 vezes o primeiro vezes o segundo mais quadrado do segundo) ai o resultado seria \frac{1}{8}
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor carlosalesouza » Ter Mai 31, 2011 17:27

Claudin, creio que vc ta cometendo uma pequena distração... rs

\lim_{x\rightarrow 0} \frac{\not x}{\not x(\sqrt{x+ 2 } + \sqrt 2)} = \frac{1}{\sqrt{0+2} + \sqrt 2}

Agora, no denominador, temos \sqrt 2 + \sqrt 2 o que é igual a 2\sqrt 2 não 4... rs ok?
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Mai 31, 2011 17:30

Elevei tanto o numerador como denominador ao quadrado para retirar a raiz.
E depois de tirar a raiz, que substitui "x" tendendo a zero. que ficaria 0+2+2

Entendeu oq eu fiz? Só queria saber se isso pode ser feito

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor carlosalesouza » Ter Mai 31, 2011 17:49

Elevar ao quadrado só pode ser feito quando temos uma (des)igualdade... pois, \frac{a}{b} \neq \frac{a^2}{b^2}, certo?

Quando temos apenas uma fração, o que podemos fazer é multiplicar ou dividir numerador e denominar por um mesmo valor, pois \frac{a}{b} = \frac{ac}{bc}, não é verdade?

Por isso que acabou dando um resultado diferente...

é verdade que \frac{1}{2\sqrt2} ainda não é o resultado final, segundo creio, pois uma raíz no denominador é inadequada... então, seria melhor continuar, multiplicando ambos pela raiz, chegando a

\frac{\sqrt 2}{4}

Que me pareceria uma resposta mais elegante... hehehehe

Uma abraço
Carlos Alexandre
Ciências Contábeis - FECEA/PR
Matemática - UEPG/PR
carlosalesouza
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 103
Registrado em: Sex Abr 29, 2011 17:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática -LIC
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Mai 31, 2011 17:51

Concordo, Valeu pela ajuda Carlos

Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: