• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite

Limite

Mensagempor Claudin » Ter Mai 31, 2011 11:04

\lim_{x\rightarrow-\infty}\frac{\sqrt[]{x^2+4}}{x+4}

Alguem ajuda na resolução?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor stuart clark » Ter Mai 31, 2011 13:21

\lim_{x\rightarrow-\infty}\frac{\sqrt[]{x^2+4}}{x+4}

\displaystyle =\lim_{x\rightarrow -\infty}\frac{x.\sqrt{1+\frac{4}{x}}}{x.\left(1+\frac{4}{x}\right)} = 1
stuart clark
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 34
Registrado em: Sáb Mai 28, 2011 00:32
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Limite

Mensagempor Claudin » Ter Mai 31, 2011 17:34

Não conseguir entender o porque de existir um "x" em evidência no denominador
ja que, ele dividiu tanto o numerador como o denominador por "x"
Nao deveria ter ficado somente 1+\frac{4}{x} no denominador?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor FilipeCaceres » Qua Jun 01, 2011 11:04

Dê uma lida neste tópico viewtopic.php?f=120&t=4799

Questão:
\lim_{x\rightarrow-\infty}\frac{\sqrt{x^2+4}}{x+4}

Minha solução.
Como x\rightarrow-\infty, isso significa que x<0, logo \sqrt{x}=-x

Assim temos,
\lim_{x\rightarrow-\infty}\frac{\sqrt{x^2+4}}{x+4}=\lim_{x\rightarrow-\infty}-\sqrt{\frac{x^2+4}{(x+4)^2}}=\lim_{x\rightarrow-\infty}-\sqrt{\frac{x^2+4}{x^2+8x+16}}=-\sqrt{\lim_{x\rightarrow-\infty}\frac{x^2+4}{x^2+8x+16}}

Você pode dividir o numerador e o denominador por x^2.

\lim_{x\rightarrow-\infty}\frac{\sqrt{x^2+4}}{x+4}=-\sqrt{\lim_{x\rightarrow-\infty}\frac{1+\frac{4}{x^2}}{1+\frac{8}{x}+\frac{16}{x^2}}}=-1

Espero que seja isso.
FilipeCaceres
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 351
Registrado em: Dom Out 31, 2010 21:43
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Tec. Mecatrônica
Andamento: formado

Re: Limite

Mensagempor Claudin » Qua Jun 01, 2011 11:18

No tópico que vc pediu pra dar uma revisada
a raiz nao ficou negativa porque?
E nesse ficou com sinal de menos multiplicando a raiz.
Sendo que ambos os problemas o x tende ao menos infinito
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qua Jun 01, 2011 18:34

FilipeCaceres, por favor revise sua mensagem.

Note que se x < 0, então \sqrt{x^2} = -x. Mas, você escreveu que \sqrt{x} = -x .

Claudin escreveu:No tópico que vc pediu pra dar uma revisada
a raiz nao ficou negativa porque?

Se x tende a menos infinito, a expressão x + 4 é positiva ou negativa? E quanto a expressão 2x² - x?
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qua Jun 01, 2011 19:36

Correto, a expressao seria negativa com o x tendendo ao infinito.
E essa expressao 2x²-x, nao entendi de onde ela foi tirada. Mas o "x" tendendo ao infinito
sendo 2x²-x também teria valor negativo nao é?
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite

Mensagempor LuizAquino » Qui Jun 02, 2011 12:32

Claudin escreveu:E essa expressao 2x²-x, nao entendi de onde ela foi tirada.

Ela aparece no outro tópico indicado por FilipeCaceres.


Claudin escreveu:Mas o "x" tendendo ao infinito sendo 2x²-x também teria valor negativo não é?

Você precisa saber analisar o sinal da função f(x) = 2x² - x para saber se ela é positiva ou negativa quando x tende ao infinito negativo. Se você não se recorda como fazer essa analise, eu recomendo que revise esse conteúdo. Por exemplo, você pode começar lendo a página a seguir:
Sinais da Função Polinomial de 2º Grau
http://www.brasilescola.com/matematica/sinais.htm
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Limite

Mensagempor Claudin » Qui Jun 02, 2011 16:15

Compreendi Felipe

Obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
Claudin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 913
Registrado em: Qui Mai 12, 2011 17:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}