![\lim_{x\rightarrow+\infty}\frac{\frac{1}{x^6}+(x^{-4})^2-(14x^3)^{-5}}{\frac{(x^{20})^{-1}}{(\sqrt[6]{x^{20})}^{-1}}+\sqrt[5]{4x^6}} \lim_{x\rightarrow+\infty}\frac{\frac{1}{x^6}+(x^{-4})^2-(14x^3)^{-5}}{\frac{(x^{20})^{-1}}{(\sqrt[6]{x^{20})}^{-1}}+\sqrt[5]{4x^6}}](/latexrender/pictures/7383706c8dc7363144435e556cca93ca.png)
Nao consegui concluir o exercicio
algm para ajudar?
obrigado
![\lim_{x\rightarrow+\infty}\frac{\frac{1}{x^6}+(x^{-4})^2-(14x^3)^{-5}}{\frac{(x^{20})^{-1}}{(\sqrt[6]{x^{20})}^{-1}}+\sqrt[5]{4x^6}} \lim_{x\rightarrow+\infty}\frac{\frac{1}{x^6}+(x^{-4})^2-(14x^3)^{-5}}{\frac{(x^{20})^{-1}}{(\sqrt[6]{x^{20})}^{-1}}+\sqrt[5]{4x^6}}](/latexrender/pictures/7383706c8dc7363144435e556cca93ca.png)


![\,= \lim_{x\to +\infty}\frac{\frac{1}{x^6}+\frac{1}{x^8}-\frac{1}{14^5x^{15}}}{\frac{\sqrt[6]{x^{20}}}{x^{20}}+\sqrt[5]{4x^6}} \,= \lim_{x\to +\infty}\frac{\frac{1}{x^6}+\frac{1}{x^8}-\frac{1}{14^5x^{15}}}{\frac{\sqrt[6]{x^{20}}}{x^{20}}+\sqrt[5]{4x^6}}](/latexrender/pictures/9de2bfefc652dca3ed98d6bb1123b2f9.png)
![= \lim_{x\to +\infty}\frac{\frac{1}{x^6\sqrt[5]{4x^6}}+\frac{1}{x^8\sqrt[5]{4x^6}}-\frac{1}{14^5x^{15}\sqrt[5]{4x^6}}}{\frac{1}{\sqrt[5]{4x^6}}\sqrt[6]{\frac{1}{x^{100}}}+1} = \lim_{x\to +\infty}\frac{\frac{1}{x^6\sqrt[5]{4x^6}}+\frac{1}{x^8\sqrt[5]{4x^6}}-\frac{1}{14^5x^{15}\sqrt[5]{4x^6}}}{\frac{1}{\sqrt[5]{4x^6}}\sqrt[6]{\frac{1}{x^{100}}}+1}](/latexrender/pictures/e3f266ebc49a220bcf63c4c5dd23ca0c.png)


![(\frac{x^{20}}{\sqrt[6]{x^{20}}})^{-1} (\frac{x^{20}}{\sqrt[6]{x^{20}}})^{-1}](/latexrender/pictures/f41782bdb5418f031ed4f6a0731055cd.png)

.
,
![\sqrt[6]{\frac{1}{x^{100}}}+1 \sqrt[6]{\frac{1}{x^{100}}}+1](/latexrender/pictures/ca82711f044690481f21c9435294b92a.png)

.
![\sqrt[6]{\frac{x^{20}}{(x^{20})^{6}}} . \frac{1}{\sqrt[5]{4x^6}} + 1 \sqrt[6]{\frac{x^{20}}{(x^{20})^{6}}} . \frac{1}{\sqrt[5]{4x^6}} + 1](/latexrender/pictures/9caf56e5af9bddadc0e5c22549089be5.png)

![\sqrt[6]{\frac{x^{20}}{(x^{20})^{6}}}=\sqrt[6]{\frac{x^{20}}{x^{20.6}}}=\sqrt[6]{\frac{x^{20}}{x^{120}}}=\sqrt[6]{\frac{1}{x^{120-20}}}=\sqrt[6]{\frac{1}{x^{100}}} \sqrt[6]{\frac{x^{20}}{(x^{20})^{6}}}=\sqrt[6]{\frac{x^{20}}{x^{20.6}}}=\sqrt[6]{\frac{x^{20}}{x^{120}}}=\sqrt[6]{\frac{1}{x^{120-20}}}=\sqrt[6]{\frac{1}{x^{100}}}](/latexrender/pictures/9019b2dae85bad74dc0f03dbd68a3d7d.png)

e não retirei a potência por isso nao estava encontrando o resultado!
Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
(dica : igualar a expressão a
e elevar ao quadrado os dois lados)