por Claudin » Seg Mai 23, 2011 18:43
![\lim_{x\rightarrow+\infty}\frac{\frac{1}{x^6}+(x^{-4})^2-(14x^3)^{-5}}{\frac{(x^{20})^{-1}}{(\sqrt[6]{x^{20})}^{-1}}+\sqrt[5]{4x^6}} \lim_{x\rightarrow+\infty}\frac{\frac{1}{x^6}+(x^{-4})^2-(14x^3)^{-5}}{\frac{(x^{20})^{-1}}{(\sqrt[6]{x^{20})}^{-1}}+\sqrt[5]{4x^6}}](/latexrender/pictures/7383706c8dc7363144435e556cca93ca.png)
Nao consegui concluir o exercicio
algm para ajudar?
obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Seg Mai 23, 2011 18:49
viewtopic.php?f=120&t=4846viewtopic.php?f=120&t=4844esses dois topicos tbm
ainda n foram respondidos!
obrigado
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Claudin » Qua Mai 25, 2011 17:49
A terceira parte da resolução, exatamente no denominador não consegui compreender os cálculos Luiz!
obs:
![(\frac{x^{20}}{\sqrt[6]{x^{20}}})^{-1} (\frac{x^{20}}{\sqrt[6]{x^{20}}})^{-1}](/latexrender/pictures/f41782bdb5418f031ed4f6a0731055cd.png)
no denominador do enunciado o valor correto seria esse
mas nao causa nenhuma mudança ne?
Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Qua Mai 25, 2011 19:51
Ao que parece você não revisou os conteúdos de potenciação e radiciação como eu recomendei. Se você não fizer essa revisão, então muito provavelmente vai continuar errando exercícios como esse.
Usando propriedades de potenciação, sendo
a e
b não nulos, sabemos que

.
Além disso, usando propriedades de radiciação, sendo
a positivo e
b não nulo, sabemos que
![\frac{\sqrt[n]{a}}{b} = \sqrt[n]{\frac{a}{b^n}} \frac{\sqrt[n]{a}}{b} = \sqrt[n]{\frac{a}{b^n}}](/latexrender/pictures/008eb28d9eff1c44eb73c413942a828c.png)
,
sendo que
b deve ser positivo não nulo caso
n seja par.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Qua Mai 25, 2011 19:53
Só nao consegui chegar em
![\sqrt[6]{\frac{1}{x^{100}}}+1 \sqrt[6]{\frac{1}{x^{100}}}+1](/latexrender/pictures/ca82711f044690481f21c9435294b92a.png)
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por LuizAquino » Qua Mai 25, 2011 20:27
Não há mistério algum. Após utilizar as propriedades de potenciação e radiciação, basta dividir tanto o numerador quanto o denominador pela expressão
![\sqrt[5]{4x^6} \sqrt[5]{4x^6}](/latexrender/pictures/165ff28f72d8c1ec592a8810e2fc198c.png)
.
-

LuizAquino
- Colaborador Moderador - Professor

-
- Mensagens: 2654
- Registrado em: Sex Jan 21, 2011 09:11
- Localização: Teófilo Otoni - MG
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado - Modelagem Computacional
- Andamento: formado
-
por Claudin » Qui Mai 26, 2011 11:31
![\sqrt[6]{\frac{x^{20}}{(x^{20})^{6}}} . \frac{1}{\sqrt[5]{4x^6}} + 1 \sqrt[6]{\frac{x^{20}}{(x^{20})^{6}}} . \frac{1}{\sqrt[5]{4x^6}} + 1](/latexrender/pictures/9caf56e5af9bddadc0e5c22549089be5.png)
cheguei ate essa parte!
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por FilipeCaceres » Qui Mai 26, 2011 22:28
Observe que,
![\sqrt[6]{\frac{x^{20}}{(x^{20})^{6}}}=\sqrt[6]{\frac{x^{20}}{x^{20.6}}}=\sqrt[6]{\frac{x^{20}}{x^{120}}}=\sqrt[6]{\frac{1}{x^{120-20}}}=\sqrt[6]{\frac{1}{x^{100}}} \sqrt[6]{\frac{x^{20}}{(x^{20})^{6}}}=\sqrt[6]{\frac{x^{20}}{x^{20.6}}}=\sqrt[6]{\frac{x^{20}}{x^{120}}}=\sqrt[6]{\frac{1}{x^{120-20}}}=\sqrt[6]{\frac{1}{x^{100}}}](/latexrender/pictures/9019b2dae85bad74dc0f03dbd68a3d7d.png)
Abraço.
-
FilipeCaceres
- Colaborador Voluntário

-
- Mensagens: 351
- Registrado em: Dom Out 31, 2010 21:43
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Tec. Mecatrônica
- Andamento: formado
por Claudin » Qui Mai 26, 2011 22:33
Nossa, claro! Tava na cara e não percebi.
eu tava deixando

e não retirei a potência por isso nao estava encontrando o resultado!
Valeu pela explicaçao Filipe
Abraço
"O que sabemos é uma gota, o que não sabemos é um oceano." - Isaac Newton
-
Claudin
- Colaborador Voluntário

-
- Mensagens: 913
- Registrado em: Qui Mai 12, 2011 17:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6472 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4551 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite trigonométrico] Como calculo este limite?
por Ronaldobb » Qua Nov 07, 2012 23:14
- 3 Respostas
- 4842 Exibições
- Última mensagem por Ronaldobb

Qui Nov 08, 2012 07:37
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] limite trigonométrico quando x tende ao infinito
por Ge_dutra » Seg Jan 28, 2013 10:13
- 2 Respostas
- 7027 Exibições
- Última mensagem por Ge_dutra

Ter Jan 29, 2013 14:20
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções piso (maior inteiro)
por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
- 2 Respostas
- 4260 Exibições
- Última mensagem por adauto martins

Qui Fev 19, 2015 15:01
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.