por willwgo » Qui Abr 28, 2011 18:15
Calcule os valores reais de x para que:

,sabendo que o polinomio
p(x)=

é divisivel por x+1.
me ajudem ai tentei de todas as formas entender o enunciado mais nau consegui chegar a nenhuma resposta
me ajudem ai.
eu tentei usar a formula de B. ruffini mais da uma equaçao do 2° grau q nau tem soluçao!
qual formula devo usar ou onde estou errando!
obrigado
-
willwgo
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Qui Fev 17, 2011 15:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Molina » Qui Abr 28, 2011 18:56
Boa tarde.
Quando você diz que não tem solução a equação do 2o grau é nos números Reais, certo? Mas elas existem no conjunto dos complexos...

Diego Molina |
CV |
FB |
.COMEquipe AjudaMatemática.com"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
-

Molina
- Colaborador Moderador - Professor

-
- Mensagens: 1551
- Registrado em: Dom Jun 01, 2008 14:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - UFSC
- Andamento: formado
por willwgo » Sex Abr 29, 2011 17:35
é q o delta deu um valor negativo!
vc poderia me passar a resposta q vc axou p/ eu tentar chegar a tal resposta sozinho!
obrigado
-
willwgo
- Usuário Dedicado

-
- Mensagens: 33
- Registrado em: Qui Fev 17, 2011 15:59
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por Renato_RJ » Sex Abr 29, 2011 21:11
Campeão, se o polinômio p(x) é divisível por (x+1) então teremos:

Digo isso, pois como foi dito no enunciado P(x) é divisível por (x+1), logo não há resto.
Como você mesmo disse, Q(x) será um polinômio de 2º grau com delta negativo, logo suas raízes não pertencem ao domínio dos Reais, mas lembre-se que P(x) é igual ao Q(x) * (x+1), então uma das raízes pertence a x+1, logo será -1 (que pertence aos Reais).
Acho que a resposta que você procura seja essa.
Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
Voltar para Polinômios
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Quais os possíveis valores que satisfazem os valores reais
por andersontricordiano » Seg Fev 24, 2014 22:53
- 1 Respostas
- 5029 Exibições
- Última mensagem por Russman

Ter Fev 25, 2014 02:17
Números Complexos
-
- Calcule qual quadrante pertence os numeros reais
por andersontricordiano » Ter Jun 07, 2011 20:19
- 1 Respostas
- 1600 Exibições
- Última mensagem por Capelett

Sex Jun 17, 2011 23:39
Trigonometria
-
- zeros reais de funções reais
por bebelo32 » Dom Mar 11, 2018 21:12
- 2 Respostas
- 5340 Exibições
- Última mensagem por adauto martins

Seg Abr 23, 2018 17:52
Funções
-
- Números Reais - Simplificar números reais
por ZANGARO » Ter Nov 15, 2011 18:46
- 0 Respostas
- 1872 Exibições
- Última mensagem por ZANGARO

Ter Nov 15, 2011 18:46
Álgebra Elementar
-
- Os valores de x são?
por Killder » Ter Nov 27, 2012 08:11
- 1 Respostas
- 2692 Exibições
- Última mensagem por Neperiano

Ter Nov 27, 2012 15:09
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Funções
Autor:
Emilia - Sex Dez 03, 2010 13:24
Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.