• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcule os valores reais de x...

calcule os valores reais de x...

Mensagempor willwgo » Qui Abr 28, 2011 18:15

Calcule os valores reais de x para que:
{x}^{3}+{2x}^{2}+8x+7=0,sabendo que o polinomio
p(x)={x}^{3}+{2x}^{2}+8x+7 é divisivel por x+1.

me ajudem ai tentei de todas as formas entender o enunciado mais nau consegui chegar a nenhuma resposta
me ajudem ai.
eu tentei usar a formula de B. ruffini mais da uma equaçao do 2° grau q nau tem soluçao!
qual formula devo usar ou onde estou errando!
obrigado
willwgo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qui Fev 17, 2011 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor Molina » Qui Abr 28, 2011 18:56

Boa tarde.

Quando você diz que não tem solução a equação do 2o grau é nos números Reais, certo? Mas elas existem no conjunto dos complexos...


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor willwgo » Sex Abr 29, 2011 17:35

é q o delta deu um valor negativo!
vc poderia me passar a resposta q vc axou p/ eu tentar chegar a tal resposta sozinho!

obrigado
willwgo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qui Fev 17, 2011 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor Renato_RJ » Sex Abr 29, 2011 21:11

Campeão, se o polinômio p(x) é divisível por (x+1) então teremos:

P(x) = Q(x) \cdot (x+1)

Digo isso, pois como foi dito no enunciado P(x) é divisível por (x+1), logo não há resto.

Como você mesmo disse, Q(x) será um polinômio de 2º grau com delta negativo, logo suas raízes não pertencem ao domínio dos Reais, mas lembre-se que P(x) é igual ao Q(x) * (x+1), então uma das raízes pertence a x+1, logo será -1 (que pertence aos Reais).

Acho que a resposta que você procura seja essa.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.