• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida sobre Propriedades de Radiciação

Dúvida sobre Propriedades de Radiciação

Mensagempor renanrdaros » Sáb Mar 19, 2011 19:50

Estou lendo o livro Pré-Cálculo da Pearson e na parte de radiciação tem uma propriedade que diz o seguinte: \sqrt[n]{u^n}= |u| para n par.

Aí vem a minha dúvida: \sqrt[]{2^2} não seria +-2? Então por que a propriedade diz que o resultado é módulo de u?
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor Elcioschin » Sáb Mar 19, 2011 20:02

Por definição:

Raiz enésima de u^n = (u^n)^(1/n) = u^(n/n) = u¹ = u

O valor \/(2²) NÃO pode ser +2 e -2 ----> O valor é 2 ou |2|
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor renanrdaros » Sáb Mar 19, 2011 20:20

Elcioschin escreveu:Por definição:

O valor \/(2²) NÃO pode ser +2 e -2 ----> O valor é 2 ou |2|



Esse é o problema. O livro afirma a existência dessa propriedade, mas também afirma que \sqrt[4]{16}=+-2

Ainda estou com a dúvida...
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor LuizAquino » Sáb Mar 19, 2011 20:38

renanrdaros escreveu:Aí vem a minha dúvida: \sqrt{2^2} não seria +-2? Então por que a propriedade diz que o resultado é módulo de u?


Errado. Você está confundindo o resultado da equação x^2 = 4, que é x = \pm 2 com o valor de \sqrt{4}, que é 2.


A propriedade descrita no livro está certa: \sqrt[n]{u^n}= |u|, para n par.

É um erro comum ignorar essa propriedade.

Por exemplo, é errado fazer \sqrt{(-2)^2} = - 2.

Lembre-se que o valor de uma raiz quadrada com índice par é sempre um número positivo!

O correto seria fazer \sqrt{(-2)^2} = |- 2|= 2.

Você poderia enxergar ainda de outra forma: \sqrt{(-2)^2} = \sqrt{4}= 2.

renanrdaros escreveu:Esse é o problema. O livro afirma a existência dessa propriedade, mas também afirma que \sqrt[4]{16}=\pm 2

O que há no livro não seria uma equação?

Por exemplo, algo como x^4 = 16 ?

De fato, essa equação tem solução x=  \pm 2.

Por outro lado, se desejamos apenas calcular o valor de \sqrt[4]{16}, então o resultado é 2.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor renanrdaros » Dom Mar 20, 2011 11:07

LuizAquino,

Obrigado pela ajuda! Muito boa a sua explicação!

Mas só vou colar aqui uma parte do que o livro diz: Quando n é par, números reais positivos têm duas raízes n-ésimas reais. Por exemplo: \sqrt[4]{16}=\pm 2

Só copiei isso pra cá pra mostrar que não estou confundindo com exponenciação nem nada. Mas o que você me diz, LuizAquino, é erro do livro mesmo?
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor LuizAquino » Dom Mar 20, 2011 11:57

Eis o que tempos no Capítulo 2, página 17 do referido livro:
radiciacao.png

Reimpresso de:
Franklin D. Demana , Bert K. Waits, Gregoryu D. Foley e Daniel Kennedy. Pré-cálculo. 1ª edição. São Paulo: Addison Wesley, 2009.

Note que o livro define que:
  • "Se a tem uma raiz n-ésima, então a principal raiz n-ésima de a é aquela com o mesmo sinal de a".
  • "A principal raiz n-ésima de a é denotada pela expressão com o radical \sqrt[n]{a} ".

A confusão está quando ele fornece o exemplo: \sqrt[4]{16}=\pm 2.

Note que isso vai de encontro com a própria definição apresentada no livro! Ele define que \sqrt[n]{a} denota a raiz principal de a. Além disso, ele define que a "principal raiz n-ésima de a é aquela com o mesmo sinal de a". Portanto, \sqrt[4]{16} denota a principal raiz quarta de 16, que é 2. Ou seja, Devemos escrever \sqrt[4]{16} = 2 .
Editado pela última vez por LuizAquino em Dom Mar 20, 2011 17:05, em um total de 1 vez.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor renanrdaros » Dom Mar 20, 2011 15:27

Valeu, cara! Tenho só mais uma dúvida sobre um exercício que tem no livro e tem a ver com o assunto que a gente tá tratando:

\sqrt[]{2x^3y^4}=\sqrt[]{(xy^2)^2.2x}=\sqrt[]{(xy^2)^2} . \sqrt[]{2x}=|x|y^2\sqrt[]{2x}

Aqui eu não entendi por que só o x saiu da raíz como módulo e o y não.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor LuizAquino » Dom Mar 20, 2011 17:03

Lembre-se que \left|a^2\right| = a^2, para qualquer número real a.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor renanrdaros » Seg Mar 21, 2011 00:07

?????

Sei mas ainda não entendi o exercício.
renanrdaros
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 54
Registrado em: Sáb Mar 19, 2011 19:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Computação
Andamento: cursando

Re: Dúvida sobre Propriedades de Radiciação

Mensagempor Dan » Seg Mar 21, 2011 04:44

Nesse caso, o x saiu com módulo e o y² não pois qualquer número real (diferente de zero) elevado ao quadrado é sempre positivo. É redundante colocar módulo num número real elevado ao quadrado.
Avatar do usuário
Dan
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 101
Registrado em: Seg Set 14, 2009 09:44
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D