por douglasjro » Seg Jan 10, 2011 19:38
O valor de
m, para que uma das raízes da equação

seja o quadrado da outra,é:
a)-3 b)-9 c)-12 d)3 e)6
Me ajudem...
Obrigado.
Douglas Oliveira
-
douglasjro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Jan 10, 2011 18:59
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Processos Gerenciais
- Andamento: cursando
por Renato_RJ » Seg Jan 10, 2011 21:54
Amigo, as opções estão certas ? Não seria 12 em vez de -12 ?
Grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por VtinxD » Ter Jan 11, 2011 00:58
Acho que deve ser -12 visto que pelas relações de girard temos:

Sendo assim o unico numero ali que apresenta o produto de consecutivos é o -12 e como r>1 a soma é positiva.
Espero não estar falando bobagem.
-
VtinxD
- Usuário Parceiro

-
- Mensagens: 64
- Registrado em: Dom Ago 15, 2010 18:29
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado em Matematica
- Andamento: cursando
por Renato_RJ » Ter Jan 11, 2011 01:10
VtinxD escreveu:Acho que deve ser -12 visto que pelas relações de girard temos:

Sendo assim o unico numero ali que apresenta o produto de consecutivos é o -12 e como r>1 a soma é positiva.
Espero não estar falando bobagem.
Humm... Está explicado como eu achei 12 em vez de -12, eu fiz com m positivo, e não negativo como você bem descreveu....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por douglasjro » Ter Jan 11, 2011 18:36
É -12 mesmo
Mas como se resolve então?
Obrigado
Douglas Oliveira
-
douglasjro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Jan 10, 2011 18:59
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Processos Gerenciais
- Andamento: cursando
por Renato_RJ » Ter Jan 11, 2011 19:23
douglasjro escreveu:É -12 mesmo
Mas como se resolve então?
Obrigado
Geralmente equações do 2º grau seguem a propriedade de Girard:

Logo, teremos:


, logo

, então

.
Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
-

Renato_RJ
- Colaborador Voluntário

-
- Mensagens: 306
- Registrado em: Qui Jan 06, 2011 15:47
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Mestrado em Matemática
- Andamento: cursando
por douglasjro » Ter Jan 11, 2011 19:43
Muito obrigado...
Douglas Oliveira
-
douglasjro
- Usuário Dedicado

-
- Mensagens: 28
- Registrado em: Seg Jan 10, 2011 18:59
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Processos Gerenciais
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Operações elementares - dúvida
por Fernanda Lauton » Ter Mai 10, 2011 16:54
- 4 Respostas
- 2007 Exibições
- Última mensagem por MarceloFantini

Ter Mai 10, 2011 19:37
Álgebra Elementar
-
- [Equações] Me ajudem nessas equações do meu trabalho!
por henriquea92 » Sáb Jun 01, 2013 15:53
- 0 Respostas
- 2963 Exibições
- Última mensagem por henriquea92

Sáb Jun 01, 2013 15:53
Equações
-
- [Equações] Determinar Frações de equações
por fenixxx » Ter Fev 28, 2012 21:28
- 2 Respostas
- 3888 Exibições
- Última mensagem por fenixxx

Qua Fev 29, 2012 17:08
Funções
-
- Equações cartesianas e equações paramétricas
por Victor Mello » Sáb Ago 23, 2014 16:24
- 1 Respostas
- 3232 Exibições
- Última mensagem por Russman

Sáb Ago 23, 2014 18:29
Funções
-
- Equações
por Neperiano » Qua Fev 11, 2009 12:33
- 6 Respostas
- 6206 Exibições
- Última mensagem por marcio silva

Sex Mar 20, 2009 20:15
Sistemas de Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.