é :a)0
b)1
c)2
d)3
e)4
Então, logo de cara o que eu fiz foi unir os dois logs antes do sinal de igual , então ficou assim :

Ai então podemos "cancelar" os dois logs e igualar
, e multiplicando temos que
, depois de um tempo ...
, e aí que chega o caô , como resolver essa função do 3° grau ?! Estou sem idéias de como destrinchar isso ?! E avaliem se o que eu fiz até agora tá certo, posso ter viajado em alguma passagem.Abraço,
Otávio.


etc etc tem só 2 raízes reais ,mesmo sendo do 3° grau ? Ela só corta o eixo x em 2 pontos então ... tava fixado com a idéia de que "uma equação do 3o grau tem que ter 3 raízes".




para o outro lado da igualdade dividindo, facilita bastante o trabalho... Não tinha percebido isso, simplesmente analisei toda a equação...

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)