• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL]

[INTEGRAL]

Mensagempor carvalhothg » Sex Abr 27, 2012 23:06

Como resolvo a integral abaixo?

Não estou conseguindo encontrar os limites de integração para o conjunto dado

\int_{}^{}\int_{R}^{}\left(y \right)dxdy

Onde R é o conjunto de todos (x,y) tais que:

{x}^{2}+{4y}^{2}\leq1
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [INTEGRAL]

Mensagempor Russman » Sáb Abr 28, 2012 06:26

A função y vai de -(1/2)raiz(1-x²) até (1/2)raiz(1-x²). E x vai de -1 até 1. Não?Passei os olhos por cima só...
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [INTEGRAL]

Mensagempor carvalhothg » Sáb Abr 28, 2012 10:07

Mas como você encontrou estes limites de integração, você poderia me explicar?
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [INTEGRAL]

Mensagempor Russman » Sáb Abr 28, 2012 16:42

Pela região R. Ela é uma elipse centrada na origem que vai de -1 até 1, em x ( faça y=0 e verifique). Agora isolando y vc obtem duas respostas: uma raiz negativa e outra positiva. Acredito que a região se limite por essas duas curva, a raiz negativa e a positiva.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Mudança Polar

Mensagempor DanielFerreira » Sáb Abr 28, 2012 23:11

carvalhothg escreveu:Como resolvo a integral abaixo?

Não estou conseguindo encontrar os limites de integração para o conjunto dado

\int_{}^{}\int_{R}^{}\left(y \right)dxdy

Onde R é o conjunto de todos (x,y) tais que:

{x}^{2}+{4y}^{2}\leq1

x^2 + 4y^2 = 1

x^2 + \frac{y^2}{\frac{1}{4}} = 1

Aplicando mudança polar:
x = r.cos\theta

e

y = \frac{r}{2}.sen\theta

O Jacobiano será \frac{r}{2}.

A partir da elipse em questão, observa-se que:
0 \leq r \leq 1 e 0 \leq \theta \leq 2\pi

Segue:
\int_{0}^{2\pi}\int_{0}^{1}\frac{r}{2}.sen\theta . \frac{r}{2}drd\theta =

\int_{0}^{2\pi}\int_{0}^{1}\frac{r^2}{4}.sen\theta drd\theta =

\int_{0}^{2\pi}\left[\frac{1}{4}.\frac{r^3}{3}sen\theta \right]_{0}^{1}d\theta =

\int_{0}^{2\pi}\frac{sen\theta}{12}d\theta =

0
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}