• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL]

[INTEGRAL]

Mensagempor carvalhothg » Sex Abr 27, 2012 23:06

Como resolvo a integral abaixo?

Não estou conseguindo encontrar os limites de integração para o conjunto dado

\int_{}^{}\int_{R}^{}\left(y \right)dxdy

Onde R é o conjunto de todos (x,y) tais que:

{x}^{2}+{4y}^{2}\leq1
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [INTEGRAL]

Mensagempor Russman » Sáb Abr 28, 2012 06:26

A função y vai de -(1/2)raiz(1-x²) até (1/2)raiz(1-x²). E x vai de -1 até 1. Não?Passei os olhos por cima só...
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [INTEGRAL]

Mensagempor carvalhothg » Sáb Abr 28, 2012 10:07

Mas como você encontrou estes limites de integração, você poderia me explicar?
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [INTEGRAL]

Mensagempor Russman » Sáb Abr 28, 2012 16:42

Pela região R. Ela é uma elipse centrada na origem que vai de -1 até 1, em x ( faça y=0 e verifique). Agora isolando y vc obtem duas respostas: uma raiz negativa e outra positiva. Acredito que a região se limite por essas duas curva, a raiz negativa e a positiva.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Mudança Polar

Mensagempor DanielFerreira » Sáb Abr 28, 2012 23:11

carvalhothg escreveu:Como resolvo a integral abaixo?

Não estou conseguindo encontrar os limites de integração para o conjunto dado

\int_{}^{}\int_{R}^{}\left(y \right)dxdy

Onde R é o conjunto de todos (x,y) tais que:

{x}^{2}+{4y}^{2}\leq1

x^2 + 4y^2 = 1

x^2 + \frac{y^2}{\frac{1}{4}} = 1

Aplicando mudança polar:
x = r.cos\theta

e

y = \frac{r}{2}.sen\theta

O Jacobiano será \frac{r}{2}.

A partir da elipse em questão, observa-se que:
0 \leq r \leq 1 e 0 \leq \theta \leq 2\pi

Segue:
\int_{0}^{2\pi}\int_{0}^{1}\frac{r}{2}.sen\theta . \frac{r}{2}drd\theta =

\int_{0}^{2\pi}\int_{0}^{1}\frac{r^2}{4}.sen\theta drd\theta =

\int_{0}^{2\pi}\left[\frac{1}{4}.\frac{r^3}{3}sen\theta \right]_{0}^{1}d\theta =

\int_{0}^{2\pi}\frac{sen\theta}{12}d\theta =

0
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: