• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[INTEGRAL]

[INTEGRAL]

Mensagempor carvalhothg » Sex Abr 27, 2012 23:06

Como resolvo a integral abaixo?

Não estou conseguindo encontrar os limites de integração para o conjunto dado

\int_{}^{}\int_{R}^{}\left(y \right)dxdy

Onde R é o conjunto de todos (x,y) tais que:

{x}^{2}+{4y}^{2}\leq1
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [INTEGRAL]

Mensagempor Russman » Sáb Abr 28, 2012 06:26

A função y vai de -(1/2)raiz(1-x²) até (1/2)raiz(1-x²). E x vai de -1 até 1. Não?Passei os olhos por cima só...
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [INTEGRAL]

Mensagempor carvalhothg » Sáb Abr 28, 2012 10:07

Mas como você encontrou estes limites de integração, você poderia me explicar?
carvalhothg
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 42
Registrado em: Dom Set 04, 2011 18:24
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [INTEGRAL]

Mensagempor Russman » Sáb Abr 28, 2012 16:42

Pela região R. Ela é uma elipse centrada na origem que vai de -1 até 1, em x ( faça y=0 e verifique). Agora isolando y vc obtem duas respostas: uma raiz negativa e outra positiva. Acredito que a região se limite por essas duas curva, a raiz negativa e a positiva.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Mudança Polar

Mensagempor DanielFerreira » Sáb Abr 28, 2012 23:11

carvalhothg escreveu:Como resolvo a integral abaixo?

Não estou conseguindo encontrar os limites de integração para o conjunto dado

\int_{}^{}\int_{R}^{}\left(y \right)dxdy

Onde R é o conjunto de todos (x,y) tais que:

{x}^{2}+{4y}^{2}\leq1

x^2 + 4y^2 = 1

x^2 + \frac{y^2}{\frac{1}{4}} = 1

Aplicando mudança polar:
x = r.cos\theta

e

y = \frac{r}{2}.sen\theta

O Jacobiano será \frac{r}{2}.

A partir da elipse em questão, observa-se que:
0 \leq r \leq 1 e 0 \leq \theta \leq 2\pi

Segue:
\int_{0}^{2\pi}\int_{0}^{1}\frac{r}{2}.sen\theta . \frac{r}{2}drd\theta =

\int_{0}^{2\pi}\int_{0}^{1}\frac{r^2}{4}.sen\theta drd\theta =

\int_{0}^{2\pi}\left[\frac{1}{4}.\frac{r^3}{3}sen\theta \right]_{0}^{1}d\theta =

\int_{0}^{2\pi}\frac{sen\theta}{12}d\theta =

0
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59