• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas]- Inclinação da tangente

[Derivadas]- Inclinação da tangente

Mensagempor Ana_Rodrigues » Qui Fev 23, 2012 15:51

A tabela mostra a estimativa da porcentagem da população da Europa que usa telefones celulares. (Estimativas dadas para meados dos anos).

____________________________________________________________
| Ano__|_1998__|__1999__|__2000__|__2001__|__2002__|__2003__|
|__P___|__28___|___39___|___55___|___68___|___77___|___83___|



b) Estime a taxa instantânea de crescimento em 2000 tomando a média de duas taxas médias de variação. Quais são suas unidades?

c) Estime a taxa instantânea de crescimento em 2000 medindo a inclinação de uma tangente.


Olá. Eu consegui fazer a letra "b" e a resposta é 14,5 por cento/ano. Quanto à pergunta "c" eu não estou conseguindo calcular o limite (derivada) sem ter a função, e no gabarito a resposta é 15 por cento/ano. Como chegar a esse resultado?


Agradeço desde já, à quem me ajudar a entender!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas]- Inclinação da tangente

Mensagempor LuizAquino » Qui Fev 23, 2012 19:45

Ana_Rodrigues escreveu:A tabela mostra a estimativa da porcentagem da população da Europa que usa telefones celulares. (Estimativas dadas para meados dos anos).

____________________________________________________________
| Ano__|_1998__|__1999__|__2000__|__2001__|__2002__|__2003__|
|__P___|__28___|___39___|___55___|___68___|___77___|___83___|


b) Estime a taxa instantânea de crescimento em 2000 tomando a média de duas taxas médias de variação. Quais são suas unidades?

c) Estime a taxa instantânea de crescimento em 2000 medindo a inclinação de uma tangente.


Ana_Rodrigues escreveu:Olá. Eu consegui fazer a letra "b" e a resposta é 14,5 por cento/ano. Quanto à pergunta "c" eu não estou conseguindo calcular o limite (derivada) sem ter a função, e no gabarito a resposta é 15 por cento/ano. Como chegar a esse resultado?


Você tem acesso a um livro de Cálculo vol I de James Stewart? Logo no início da seção que trata sobre taxa de variação instantânea há um exercício parecido com esse.

A ideia básica é:
1) Marcar os pontos dados em um plano cartesiano. Deve-se considerar o eixo x como sendo o ano e o eixo y como sendo a porcentagem;
2) Desenhar uma curva suave que interpola os pontos;
3) Traçar um segmento tangente a curva no ponto (2000, 55);
4) Usar o segmento tangente traçado no passo 3) como sendo a hipotenusa de um triângulo retângulo, sendo que cada cateto desse triângulo é paralelo a um dos eixos;
5) Medir os catetos do triângulo formado no passo 4) e calcular a tangente usando essas medidas.

Vale lembrar que a reposta do gabarito é aproximada. Sendo assim, após executar os passos acima você irá obter um número que é próximo de 15.
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivadas]- Inclinação da tangente

Mensagempor Ana_Rodrigues » Qui Fev 23, 2012 20:48

Eu estou estudando cálculo pelo livro do James Stewart. Se eu colocasse na letra "c" a mesma resposta da letra "b" eu poderia estar correta?
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Derivadas]- Inclinação da tangente

Mensagempor LuizAquino » Qui Fev 23, 2012 21:00

Ana_Rodrigues escreveu:Eu estou estudando cálculo pelo livro do James Stewart. Se eu colocasse na letra "c" a mesma resposta da letra "b" eu poderia estar correta?


Nesse contexto, não poderia. Afinal de contas, o exercício diz explicitamente que a estimativa deve ser obtida "medindo a inclinação de uma tangente".
professoraquino.com.br | youtube.com/LCMAquino | @lcmaquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2654
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Derivadas]- Inclinação da tangente

Mensagempor Ana_Rodrigues » Qui Fev 23, 2012 21:10

Obrigada!
Ana_Rodrigues
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 51
Registrado em: Seg Nov 14, 2011 09:44
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: função demanda
Autor: ssousa3 - Dom Abr 03, 2011 20:55

alguém poderia me ajudar nesse exercício aqui Uma loja de CDs adquire cada unidade por R$20,00 e a revende por R$30,00. Nestas condições,
a quantidade mensal que consegue vender é 500 unidades. O proprietário estima que, reduzindo o preço para R$28,00, conseguirá vender 600 unidades por mês.
a) Obtenha a função demanda, supondo ser linear

Eu faço ensino médio mas compro apostilas de concursos para me preparar para mercado de trabalho e estudar sozinho não é fácil. Se alguém puder me ajudar aqui fico grato


Assunto: função demanda
Autor: ssousa3 - Seg Abr 04, 2011 14:30

Gente alguém por favor me ensine a calcular a fórmula da função demanda *-)