• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Extremos de funções e derivadas

Extremos de funções e derivadas

Mensagempor Victor Mello » Dom Nov 17, 2013 12:20

Galera, eu estava tentando esboçar o gráfico da função g(x)= x\sqrt[]{8-x^2}. E tuda estava dando certo.

Derivei essa função e achei os pontos críticos, que são x=2 ou x=-2 e também x=2\sqrt[]{2} ou x=-2\sqrt[]{2}

Feito isso, eu derivei novamente essa função (no caso a segunda derivada) para verificar se os pontos críticos são pontos de máximo ou ponto de mínimo. E pelo que calculei, o x=2 é o ponto de máximo (segunda derivada é negativa) e também côncavo para baixo, e x=-2 é o ponto de mínimo (segunda derivada é positiva) e também côncavo para cima. Mas para x=2\sqrt[]{2} e x=-2\sqrt[]{2} a segunda derivada não existe (joguei tudo pela calculadora pois é muito trabalho fazer tudo a mão), então não podemos afirmar nada se esses pontos são de máximo ou de mínimo. Mas eu sei que o x=0 é o ponto de inflexão, pois a segunda derivada é nula para esse ponto.

OBS: deu muito trabalho para derivar essa função, pois é uma função polinominal junto com a raíz. Isso vira um jogo de regra da cadeia.

Feito isso eu esbocei o gráfico e ficou assim:


Mínimo local em x=-2 máximo local em x=2

Porém, o gabarito deu também que tem máximos e mínimos absolutos que é x=2 e x=-2 respectivamente, e máximo local em x=-2\sqrt[]{2} e mínimo local em x=2\sqrt[]{2}, além de x=2 e x=-2 que achei. Eu não entendi o motivo da existência de extremos absolutos, transferi tudo para o software gráfico e esse gráfico ficou muito parecido com o meu, e o gabarito está dizendo que faltou alguma coisa. Alguém poderia me ajudar a verificar esse misterioso gráfico? Eu Agradeço se alguém puder :-D

Abraço.
Anexos
IMG_0224.JPG
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Extremos de funções e derivadas

Mensagempor e8group » Dom Nov 17, 2013 15:39

A função g é contínua no intervalo fechado [-2\sqrt{2},2\sqrt{2}] = I (Este é o maior intervalo para o qual a função está definida) ,então pelo Teorema de Weierstrass está função possui um valor máximo absoluto e mínimo absoluto em I .

É bem provável que esta função assuma valor máximo/mínimo absoluto nos pontos do extremo do intervalo ou nos pontos críticos encontrados.

Basta comparar a imagens destes pontos (críticos e dos extremos do intervalo) por g ,verificando quais são maiores ,menores .

OBS .: Observe que a função não está definida para pontos fora do intervalo I , pois, pontos tomados em I^{C} são levados em imagem complexas por g e estamos trabalhando com funções cujo domínio e contra-domínio são subconjuntos de \mathbb{R} .

Portanto deve corrigir o esboço do gráfico .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Extremos de funções e derivadas

Mensagempor Victor Mello » Dom Nov 17, 2013 16:35

Ahhh é verdade! Nem tinha percebido que o domínio dessa função também varia de -2\sqrt[]{2} para 2\sqrt[]{2}. Então quer dizer que os pontos críticos -2\sqrt[]{2} e 2\sqrt[]{2} também são extremos dos intervalos? Agora clareou um pouco, pois já que o intervalo do domínio é dessa forma, então realmente os extremos absolutos são x=-2 e x=2. Agora quero entender: Já que o intervalo do domínio é assim, eu ainda não estou enxergando de onde veio os pontos de máximo e mínimo local em -2\sqrt[]{2} e 2\sqrt[]{2} respectivamente, é o que o gabarito mostrou. A imagem desses pontos é zero, e dos pontos críticos 2 e -2 são: 4 e -4 respectivamente. Mas valeu pelo detalhe.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando

Re: Extremos de funções e derivadas

Mensagempor e8group » Dom Nov 17, 2013 18:54

Não é possível determinar intervalos abertos \subset I contendo um dos extremos do intervalo I ,então como tais pontos são considerados extremos locais ?

Observe que se - 2\sqrt{2} fosse ponto de máximo local de g então existiria uma vizinhança V \subset I de - 2\sqrt{2} (i.e, um intervalo aberto (a,b) \subset I contendo - 2\sqrt{2} ) tal que
f(x) \leq  f(-2\sqrt{2})  , \forall x \in V , mas acontece que não existe esta vizinhança V de - 2\sqrt{2} .Pelo mesmo argumento ,pode-se concluir que 2\sqrt{2} não é mínimo local .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Extremos de funções e derivadas

Mensagempor Victor Mello » Dom Nov 17, 2013 19:16

Pois é... Eu estava suspeitando isso. Puxa, os extremos do domínio é só para limitar uma função e ponto não tem como esses extremos serem extremos locais. Então para mim, o gabarito só pode estar errado. Na verdade então só tem x=2 e x=-2 como extremos locais, assim como absolutos, pois justamente o domínio varia de -2\sqrt[]{2} até 2\sqrt[]{2} num intervalo fechado.
Victor Mello
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Dom Nov 03, 2013 17:29
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da computação.
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Princípio da Indução Finita
Autor: Fontelles - Dom Jan 17, 2010 14:42

Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?
2n \geq n+1 ,\forall n \in\aleph*
O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois 2.1 \geq 1+1
2°) Admitamos que P(k), k \in \aleph*, seja verdadeira:
2k \geq k+1 (hipótese da indução)
e provemos que 2(k+1) \geq (K+1)+1
Temos: (Nessa parte)
2(k+1) = 2k+2 \geq (k+1)+2 > (k+1)+1


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Seg Jan 18, 2010 01:55

Boa noite Fontelles.

Não sei se você está familiarizado com o Princípio da Indução Finita, portanto vou tentar explicar aqui.

Ele dá uma equação, no caso:

2n \geq n+1, \forall n \in \aleph^{*}

E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:

2*1 \geq 1+1

Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que k seja verdadeiro, e pretendemos provar que também é verdadeiro para k+1.

\mbox{Suponhamos que P(k), }k \in \aleph^{*},\mbox{ seja verdadeiro:}
2k \geq k+1

\mbox{Vamos provar que:}
2(k+1) \geq (k+1)+1

Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.

Espero ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Fontelles - Seg Jan 18, 2010 02:28

Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!


Assunto: Princípio da Indução Finita
Autor: Fontelles - Qui Jan 21, 2010 11:32

Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Jan 21, 2010 12:25

Boa tarde Fontelles!

Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.

O que temos que provar é isso: 2(k+1) \geq (k+1)+1, certo? O autor começou do primeiro membro:

2(k+1)= 2k+2

Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:

2k+2 \geq (k+1)+2

Que é outra verdade. Agora, com certeza:

(k+1)+2 > (k+1)+1

Agora, como 2(k+1) é \geq a (k+1)+2, e este por sua vez é sempre > que (k+1)+1, logo:

2(k+1) \geq (k+1)+1 \quad \mbox{(c.q.d)}

Inclusive, nunca é igual, sempre maior.

Espero (dessa vez) ter ajudado.

Um abraço.


Assunto: Princípio da Indução Finita
Autor: Caeros - Dom Out 31, 2010 10:39

Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?


Assunto: Princípio da Indução Finita
Autor: andrefahl - Dom Out 31, 2010 11:37

c.q.d. = como queriamos demonstrar =)


Assunto: Princípio da Indução Finita
Autor: Abelardo - Qui Mai 05, 2011 17:33

Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.


Assunto: Princípio da Indução Finita
Autor: MarceloFantini - Qui Mai 05, 2011 20:05

Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.


Assunto: Princípio da Indução Finita
Autor: Vennom - Qui Abr 26, 2012 23:04

MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.

Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa. :-D