por jeferson_justo135 » Seg Jan 12, 2015 22:48
Calcular a transformada de laplace das seguintes funções:
a)

=

=

b)
![\sqrt[]{5}.{e}^{-8t}.cos(3\pi t) \sqrt[]{5}.{e}^{-8t}.cos(3\pi t)](/latexrender/pictures/4d42b208c0a1ab0dde0f230257218d0c.png)
=
![\sqrt[]{5}.\frac{3\pi}{{(s+8)}^{2}+{3\pi}^{2}} \sqrt[]{5}.\frac{3\pi}{{(s+8)}^{2}+{3\pi}^{2}}](/latexrender/pictures/604ad6648ad43987a7b5d73fbe8b5fcf.png)
=

c)

= eliminando os parênteses fica =

=

Pessoal por favor, estou com dúvidas, alguém pode me dizer se eu acertei os três exercícios? Obrigado.
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Ter Jan 13, 2015 02:22
A letra a) está correta.
Na letra b) você usou a Transformada da Função

.
De fato,

enquanto

.
A letra c) está errada. Uma vez que você conhece a Transformada da função

, utilize do fato de que

.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Ter Jan 13, 2015 21:04
Muito obrigado pelo retorno! Refiz os itens b e c porém surgiram dúvidas:
b)
![\sqrt[]{5}.{e}^{-8t}.cos(3\pi.t)=\frac{s+8}{({s+8}^{2})+3{\pi}^{2}}=\frac{s+8}{{s}^{2}+16s+152,83} \sqrt[]{5}.{e}^{-8t}.cos(3\pi.t)=\frac{s+8}{({s+8}^{2})+3{\pi}^{2}}=\frac{s+8}{{s}^{2}+16s+152,83}](/latexrender/pictures/2eba32dbae5bfce92ac0039622024e21.png)
= está correto?
c)

= não consegui entender o que você disse para aplicar, você pode me mostrar por favor? Estou aprendendo agora essa matéria.
Obrigado.
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por Russman » Qua Jan 14, 2015 01:52
Agora a letra b) está correta. Você não precisa expandir os termos e muito menos substituir um valor aproximado de

. É perfeitamente correto que

Para calcular a transformada da função da letra c) você pode usar a propriedade

.
Esta diz que se você tem uma função

, sabe a sua Transformada e deseja calcular a transformada desta função multiplicada por

então basta derivar com respeito a

a Transfomada de

e trocar o sinal.
Por exemplo, gostaríamos de calcular a Transformada de

. De fato,

e

.
Assim, segundo a propriedade,

Entende?
Não é difícil de mostrar esse propriedade.
A Transformada

será

.
Tente resolver e concluir a afirma a cima.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por jeferson_justo135 » Qui Jan 15, 2015 09:22
Muito obrigado novamente! Eu vou refazer e ainda hoje posto o resultado para verificação!
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por jeferson_justo135 » Seg Jan 19, 2015 16:55
Olá amigo muito obrigado!
Eu refiz os cálculos e consegui chegar nesse resultado, porém surgiu uma dúvida: a parte de cima da equação final

foi resultado de uma derivada assim como a parte de baixo? Pois na verdade o que aparenta é que foi derivado apenas a parte de baixo e a de cima foi alterado apenas o sinal.
Obrigado.
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
por jeferson_justo135 » Dom Fev 08, 2015 16:53
Olá amigo, refiz o item c com suas dicas, cheguei a esse resultado:
Transformada de

Transformada de

Logo a trasnformada de Laplace de

Por favor, agora está certo?
No item a, posso simplificar o resultado de

por

?
Obrigado.
-
jeferson_justo135
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Seg Jan 12, 2015 20:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [TRANSFORMADA DE LAPLACE]
por liviabgomes » Qui Dez 01, 2011 15:19
- 1 Respostas
- 1141 Exibições
- Última mensagem por LuizAquino

Seg Dez 05, 2011 10:19
Cálculo: Limites, Derivadas e Integrais
-
- Transformada de Laplace
por Russman » Sex Mai 04, 2012 01:13
- 2 Respostas
- 1487 Exibições
- Última mensagem por pvgomes07

Sex Ago 10, 2012 13:11
Funções
-
- transformada de laplace
por theSinister » Seg Nov 05, 2012 16:01
- 2 Respostas
- 1148 Exibições
- Última mensagem por theSinister

Seg Nov 05, 2012 18:11
Cálculo: Limites, Derivadas e Integrais
-
- Transformada de Laplace - função de transferência
por pvgomes07 » Sex Ago 10, 2012 12:52
- 2 Respostas
- 1512 Exibições
- Última mensagem por pvgomes07

Qui Ago 16, 2012 15:40
Cálculo: Limites, Derivadas e Integrais
-
- coordenadas esfericas Laplace tridimensional
por rhuam » Sex Set 15, 2017 09:36
- 0 Respostas
- 1761 Exibições
- Última mensagem por rhuam

Sex Set 15, 2017 09:36
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.