• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Transformada de laplace] de funções

[Transformada de laplace] de funções

Mensagempor jeferson_justo135 » Seg Jan 12, 2015 22:48

Calcular a transformada de laplace das seguintes funções:
a) \frac{\pi}{2}.{t}^{4}.{e}^{-6t} = \frac{\pi}{2}.\frac{4!}{(s+6)^5} = \frac{24\pi}{2(s+6)^5}

b)\sqrt[]{5}.{e}^{-8t}.cos(3\pi t) = \sqrt[]{5}.\frac{3\pi}{{(s+8)}^{2}+{3\pi}^{2}} = \frac{21,07}{({s+8}^{2})+88,83}

c) t.cos\(((7\frac{\pi}{2})t)5! = eliminando os parênteses fica = t.cos1319,6.t = \frac{1}{{s}^{2}}.\frac{s}{{s}^{2}+{(1319,46)}^{2}} = \frac{s}{({s}^{2}+1740998,21)}.{s}^{2}

Pessoal por favor, estou com dúvidas, alguém pode me dizer se eu acertei os três exercícios? Obrigado.
jeferson_justo135
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 12, 2015 20:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando

Re: [Transformada de laplace] de funções

Mensagempor Russman » Ter Jan 13, 2015 02:22

A letra a) está correta.

Na letra b) você usou a Transformada da Função \sin( \omega t).

De fato,

\mathfrak{L}\left \{ e^{at}\sin(\omega t) \right \} = \frac{\omega}{(s-a)^2+\omega^2}

enquanto

\mathfrak{L}\left \{ e^{at}\cos(\omega t) \right \} = \frac{s-a}{(s-a)^2+\omega^2}.

A letra c) está errada. Uma vez que você conhece a Transformada da função \cos(\omega t), utilize do fato de que

\mathfrak{L}\left \{ tf(t) \right \} =- \frac{\mathrm{d} }{\mathrm{d} s} \mathfrak{L}\left \{ f(t) \right \}.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Transformada de laplace] de funções

Mensagempor jeferson_justo135 » Ter Jan 13, 2015 21:04

Muito obrigado pelo retorno! Refiz os itens b e c porém surgiram dúvidas:

b) \sqrt[]{5}.{e}^{-8t}.cos(3\pi.t)=\frac{s+8}{({s+8}^{2})+3{\pi}^{2}}=\frac{s+8}{{s}^{2}+16s+152,83} = está correto?

c) t.(cos(7\frac{\pi}{2})t)5!=t(\frac{s}{{s}^{2}+120,90)})120== não consegui entender o que você disse para aplicar, você pode me mostrar por favor? Estou aprendendo agora essa matéria.
Obrigado.
jeferson_justo135
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 12, 2015 20:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando

Re: [Transformada de laplace] de funções

Mensagempor Russman » Qua Jan 14, 2015 01:52

Agora a letra b) está correta. Você não precisa expandir os termos e muito menos substituir um valor aproximado de \pi. É perfeitamente correto que

\mathfrak{L}\left \{ \sqrt{5}e^{-8t}\cos(3 \pi t) \right \} = \frac{\sqrt{5}(s+8)}{(s+8)^2+9 \pi^2}

Para calcular a transformada da função da letra c) você pode usar a propriedade

\mathfrak{L}\left \{ tf(t) \right \} =- \frac{\mathrm{d} }{\mathrm{d} s} \mathfrak{L}\left \{ f(t) \right \}.

Esta diz que se você tem uma função f(t), sabe a sua Transformada e deseja calcular a transformada desta função multiplicada por t então basta derivar com respeito a s a Transfomada de f(t) e trocar o sinal.

Por exemplo, gostaríamos de calcular a Transformada de f(t) = t^3. De fato, t^3 = t . t^2 e \mathfrak{L}\left \{ t^2 \right \} = \frac{2}{s^3}.

Assim, segundo a propriedade,

\mathfrak{L}\left \{ t^3 \right \} = \mathfrak{L}\left \{ t . (t^2) \right \} = - \frac{\mathrm{d} }{\mathrm{d} s} \mathfrak{L}\left \{ t^2 \right \} \Rightarrow \mathfrak{L}\left \{ t^3 \right \} = -  \frac{\mathrm{d} }{\mathrm{d} s} \frac{2}{s^3} = - \frac{-6}{s^4} = \frac{6}{s^4}

Entende?

Não é difícil de mostrar esse propriedade.

A Transformada \mathfrak{L}\left \{ t\cos(\omega t) \right \} será

\mathfrak{L}\left \{ t\cos(\omega t) \right \} = \frac{s^2-\omega^2}{(s^2+\omega^2)^2}.

Tente resolver e concluir a afirma a cima.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Transformada de laplace] de funções

Mensagempor jeferson_justo135 » Qui Jan 15, 2015 09:22

Muito obrigado novamente! Eu vou refazer e ainda hoje posto o resultado para verificação!
jeferson_justo135
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 12, 2015 20:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando

Re: [Transformada de laplace] de funções

Mensagempor jeferson_justo135 » Seg Jan 19, 2015 16:55

Olá amigo muito obrigado!

Eu refiz os cálculos e consegui chegar nesse resultado, porém surgiu uma dúvida: a parte de cima da equação final {s}^{2}-{w}^{2} foi resultado de uma derivada assim como a parte de baixo? Pois na verdade o que aparenta é que foi derivado apenas a parte de baixo e a de cima foi alterado apenas o sinal.

Obrigado.
jeferson_justo135
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 12, 2015 20:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando

Re: [Transformada de laplace] de funções

Mensagempor Russman » Ter Jan 20, 2015 05:27

Você deriva com relação a s a transformada do cosseno e troca o sinal.

O resultado é como lhe mostrei.

http://www.wolframalpha.com/input/?i=-+%28d%2Fds%29+s%2F%28s%5E2+%2B+w%5E2%29
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: [Transformada de laplace] de funções

Mensagempor jeferson_justo135 » Dom Fev 08, 2015 16:53

Olá amigo, refiz o item c com suas dicas, cheguei a esse resultado:

Transformada de coswt = \frac{s}{{s}^{2}+{w}^{2}} = \frac{s}{{s}^{2}+(7\frac{\pi}{2}^2)} = \frac{s}{{s}^{2}+49\frac{\pi}{2}^2}
Transformada de tcos(wt) = \frac{d}{ds}(-\frac{s}{{s}^{2}+{w}^2{}}) = \frac{{s}^{2}-{w}^{2}}{({s}^{2}+{w}^{2})^2} = \frac{d}{ds}(-\frac{s}{{s}^{2}+49{\frac{\pi}{2}}^{2}})=\frac{{s}^{2}-49{\frac{\pi}{2}}^{2}}{({s}^{2}+49\p{\frac{\pi}{2}}^{2})^2}

Logo a trasnformada de Laplace de
tcos ((7.\frac{\pi}{2})t)5!=\frac{{s}^{2}-49\frac{\pi}{2}^2}{({s}^{2}+49\frac{\pi}{2}^2)^2}}.120 = \frac{120({s}^{2}-49\frac{\pi}{2}^2)}{({s}^{2}+49\frac{\pi}{2}^2)^2}


Por favor, agora está certo?

No item a, posso simplificar o resultado de \frac{24\pi}{2(s+6)^5} por \frac{12\pi}{(s+6)^5} ?

Obrigado.
jeferson_justo135
Usuário Ativo
Usuário Ativo
 
Mensagens: 15
Registrado em: Seg Jan 12, 2015 20:32
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Proporcionalidade
Autor: silvia fillet - Qui Out 13, 2011 22:46

Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.


Assunto: Proporcionalidade
Autor: silvia fillet - Sáb Out 15, 2011 10:25

POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?

P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50

P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25


P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833


4/6 =10/15 =14/21 RAZÃO = 2/3

SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA


Assunto: Proporcionalidade
Autor: ivanfx - Dom Out 16, 2011 00:37

utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.


Assunto: Proporcionalidade
Autor: Marcos Roberto - Dom Out 16, 2011 18:24

Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.

Você conseguiu achar o dia em que caiu 15 de novembro de 1889?


Assunto: Proporcionalidade
Autor: deiasp - Dom Out 16, 2011 23:45

Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 06:23

Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 07:18

Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.


Assunto: Proporcionalidade
Autor: silvia fillet - Seg Out 17, 2011 07:40

Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias

44242:7 = 6320 + resto 2

è assim, nâo sei mais sair disso.


Assunto: Proporcionalidade
Autor: ivanfx - Seg Out 17, 2011 10:24

que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta


Assunto: Proporcionalidade
Autor: Kiwamen2903 - Seg Out 17, 2011 19:43

Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:


De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.

De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.

De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.

Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.