por rafa_0910 » Dom Nov 02, 2014 14:17
Bom Dia,
Gostaria de saber se sempre quando o divisor resulta em zero e o dividendo em "K" o limite de f(x) será infinito?
Nesse caso:
![\lim_{7}\left(\sqrt[]{x+7} -3\right)/\left(7-x \right) \lim_{7}\left(\sqrt[]{x+7} -3\right)/\left(7-x \right)](/latexrender/pictures/1697f52a86efbe95e6b7005f941b26bd.png)
, Qual seria a resposta correta?
Grato por quem se interessar responder!
-
rafa_0910
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Nov 02, 2014 14:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Dom Nov 02, 2014 21:22
Sim. Os casos que devem ser melhor estudados são os casos de 0/0 ou infinito/infinito que são indeterminações. Isto é, são números reais um pouco mais difíceis de serem calculados.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
por rafa_0910 » Dom Nov 02, 2014 23:40
Nesse questão acima, meu professor afirmou q a resposta correta seria = a não existe, e para provar fez lim quan x->7 pela direita q resutou em +infinito e x->7 pela esquerda, q resultou em -infinito. Está correta essa afirmação? E caso esteja errado, como provar?
Grato desde já!
-
rafa_0910
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Dom Nov 02, 2014 14:02
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Civil
- Andamento: cursando
por Russman » Seg Nov 03, 2014 02:23
De fato. Observe o gráfico dessa função e note que os limites laterias são diferentes em x=7. Portanto, o limite não existe.
"Ad astra per aspera."
-
Russman
- Colaborador Voluntário

-
- Mensagens: 1183
- Registrado em: Sex Abr 20, 2012 22:06
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Física
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Podem me ajudar...
por Fiel8 » Sáb Jun 27, 2009 20:00
- 1 Respostas
- 1499 Exibições
- Última mensagem por Molina

Seg Jun 29, 2009 20:50
Funções
-
- Podem me esinar?urgente :/
por Amandatkm » Dom Abr 21, 2013 11:57
- 1 Respostas
- 1270 Exibições
- Última mensagem por young_jedi

Seg Abr 22, 2013 10:47
Equações
-
- Podem me explicar essa equação -> a/b = a * (1/b)
por osdeving » Qua Fev 12, 2014 20:14
- 1 Respostas
- 1119 Exibições
- Última mensagem por osdeving

Qua Fev 12, 2014 23:29
Equações
-
- [FUNÇÕES] PODEM ME AJUDAR POR FAVOR?
por Miya » Seg Mar 30, 2015 10:21
- 3 Respostas
- 2959 Exibições
- Última mensagem por adauto martins

Ter Mar 31, 2015 12:27
Funções
-
- [FUNÇÕES] PODEM ME AJUDAR POR FAVOR?
por Miya » Seg Abr 06, 2015 09:11
- 1 Respostas
- 1174 Exibições
- Última mensagem por adauto martins

Seg Abr 06, 2015 13:06
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.