
Nota-se claramente uma indeterminação do tipo "
", então eu transformei o produto em um quociente para aplicar L'Hospital e obtive:
Tipo, eu pensei em multiplicar o númerador e o denominador por
, mas sei lá... Tentei e acho que deu errado.E empaquei aí... :/ Sei que é meio vergonhoso, mas o cérebro já não está trabalhando tão bem há esta hora. x_x
Bem, qualquer ajuda, eu já agradeço!

,
. Assim,
.
não é
... E sim
, enfim... Depois de um banho, voltei a questão e acho que consegui resolver; se você não tivesse me dado o toque para aquele meu erro, eu demoraria para ter percebido, enfim, ficou assim:

![\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}} \frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}](/latexrender/pictures/981987c7bcdf9f8f498ca4605785636a.png)
e elevar ao quadrado os dois lados)