• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcule os valores reais de x...

calcule os valores reais de x...

Mensagempor willwgo » Qui Abr 28, 2011 18:15

Calcule os valores reais de x para que:
{x}^{3}+{2x}^{2}+8x+7=0,sabendo que o polinomio
p(x)={x}^{3}+{2x}^{2}+8x+7 é divisivel por x+1.

me ajudem ai tentei de todas as formas entender o enunciado mais nau consegui chegar a nenhuma resposta
me ajudem ai.
eu tentei usar a formula de B. ruffini mais da uma equaçao do 2° grau q nau tem soluçao!
qual formula devo usar ou onde estou errando!
obrigado
willwgo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qui Fev 17, 2011 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor Molina » Qui Abr 28, 2011 18:56

Boa tarde.

Quando você diz que não tem solução a equação do 2o grau é nos números Reais, certo? Mas elas existem no conjunto dos complexos...


:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor willwgo » Sex Abr 29, 2011 17:35

é q o delta deu um valor negativo!
vc poderia me passar a resposta q vc axou p/ eu tentar chegar a tal resposta sozinho!

obrigado
willwgo
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 33
Registrado em: Qui Fev 17, 2011 15:59
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: calcule os valores reais de x...

Mensagempor Renato_RJ » Sex Abr 29, 2011 21:11

Campeão, se o polinômio p(x) é divisível por (x+1) então teremos:

P(x) = Q(x) \cdot (x+1)

Digo isso, pois como foi dito no enunciado P(x) é divisível por (x+1), logo não há resto.

Como você mesmo disse, Q(x) será um polinômio de 2º grau com delta negativo, logo suas raízes não pertencem ao domínio dos Reais, mas lembre-se que P(x) é igual ao Q(x) * (x+1), então uma das raízes pertence a x+1, logo será -1 (que pertence aos Reais).

Acho que a resposta que você procura seja essa.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59