• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PG...

PG...

Mensagempor 404040 » Seg Out 18, 2010 18:27

Se nº 111 for dividido em três partes, que constituem uma PG de razão 3/4, a menor desssas partes será :
Estou quebrando a cabeça mas não consigo nem começar o cálculo...
404040
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 17, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando

Re: PG...

Mensagempor VtinxD » Sáb Out 23, 2010 03:18

Podemos escrever uma PG desta forma:
({a}_{1};{a}_{2};{a}_{3};....;{a}_{n})=({a}_{1};{a}_{1}.q;{a}_{1}.{q}^{2};....;{a}_{1}.{q}^{n-1}).Sendo {a}_{1} o termo independente , {a}_{n}o n-ésimo termo e "q" a razão da PG.
Como o numero 111 foi dividido em três partes em PG logo podem ser escritos da for utilizada acima ,como são apenas 3 números em PG podemos utilizar os tres primeiros termos da dela.
{a}_{1}+{a}_{2}+{a}_{3}={a}_{1}+{a}_{1}.q+{a}_{1}.{q}^{2}=111.Como q=\frac{3}{4} temos:
{a}_{1}+{a}_{1}.\frac{3}{4}+{a}_{1}.{(\frac{3}{4})}^{2}={a}_{1}\left(1+\frac{3}{4}+{(\frac{3}{4})}^{2} \right)=111.Tirando o mmc:
{a}_{1}\left( \frac{16+12+9}{16}\right)={a}_{1}\left( \frac{37}{16}\right)=111\Rightarrow{a}_{1}=\frac{16.111}{37}={a}_{1}=16.3\Rightarrow{a}_{1}=48
Como a PG é decrecente, graças a sua razão menor do que 1,o menor termo não é {a}_{1} e sim {a}_{3}.
{a}_{3}={q}^{2}.{a}_{1}=\frac{9}{16}.48=3.9\Rightarrow {a}_{3}=27
Espero ter ajudado e me desculpe qualquer erro mas são 3 da manhã :-D .Boa noite
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: PG...

Mensagempor 404040 » Sáb Out 23, 2010 09:21

Agradeço muito a boa vontade, principalmente neste horário, sua explicação foi ótima, simples e prática, valeu...
404040
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 17, 2010 20:41
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em matemática
Andamento: cursando


Voltar para Progressões

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.