• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Logaritmo] - Dúvida na resolução

[Logaritmo] - Dúvida na resolução

Mensagempor mota_16 » Dom Dez 08, 2013 19:43

Pessoal, por favor alguém consegue encontrar meu erro!

A questão:
Sejam a e b números reais tais que 1<a<b<{a}^{2}. Se x=log_{a}{b}, y=log_{b}{a}, z=log_{a}{ab} e w=log_{b}{\frac{b}{a}} então:
a) w<y<x<z
b) y<x<z<w
c) z<y<x<w
d) y<w<x<z
e) w<x<y<z

Gabarito: A

Minha resolução: x=log_{a}{b}\Rightarrow {a}^{x}=b (1)
y=log_{b}{a}\Rightarrow {b}^{y}=a (2)

Substituindo (1) em (2):

{\left({a}^{x} \right)}^{y} = a \Rightarrow xy = 1{\left({a}^{x} \right)}^{y} = a \Rightarrow xy = 1 \Rightarrow x=\frac{1}{y}
z=log_{a}{ab}\Rightarrow log_{a}{a}+log_{a}{b}\Rightarrow z = 1 + x
w=log_{b}{\frac{b}{a}}\Rightarrow log_{b}{b}-log_{b}{a}\Rightarrow w = 1 - y

Assim, se x = 3, teríamos y = 1/3; z = 4; w = 2/3 ou ainda,
se x = 4; y = 1/4; z = 5; w = 3/4

Ou seja, y < w < x < z (alternativa d)

Fiz uma planilha no Excel que confirma o gabarito (alternativa A). Queria entender onde errei.

Grato.
mota_16
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Dez 06, 2013 10:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Regular
Andamento: cursando

Re: [Logaritmo] - Dúvida na resolução

Mensagempor Pessoa Estranha » Dom Dez 08, 2013 20:38

Olá ! Muito bom o exercício ! E, na verdade, não há nada de errado na sua resolução. Ocorreu apenas um problema no final; é o seguinte:

Observe que, ao considerar x = 3 ou x = 4, você não satisfez a condição de
mota_16 escreveu:1<a<b<{a}^{2}.


Note que, tomando x = 3, temos: {a}^{3} = b, o que, pela condição citada acima, está errado. Assim, testando vários valores, temos que um x que satisfaz aquela desigualdade é, por exemplo, x = 3/2. Assim, temos: {a}^{\frac{3}{2}} = b, fato que respeita a condição e nos leva a alternativa A. Confira!

Entendeu?

Se não, pode perguntar...

:y:
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Logaritmo] - Dúvida na resolução

Mensagempor e8group » Dom Dez 08, 2013 20:54

Seja a função f: (0,+\infty) \mapsto \mathbb{R} definida por f(x) = log_b(x) para algum b fixado (que cumpre com a desigualdade dada) .Como esta função admite inversa à esquerda ela é injetora (pois , se h(x) = b^x , tem-se ( h \circ f)(x)   = h(f(x)) = b^{log_b(x)} = x ) e assim ela é estritamente monótona (estritamente crescente ou estritamente decrescente ) .Como b > 1 ,segue que f é estritamente crescente ,ou seja , se x_1 ,x_2 \in (0,+\infty) e x_1 > x_2 então f(x_1) > f(x_2) (*) .

Assim , se a^2 > b > a > 1 então

a > b/a então f(a) > f(b/a) (**) .

Agora por mudança de base log_a(ab) = \frac{log_b(ab)}{log_b(a)} = f(ab)/f(a) (***) e

log_a(b) = log_b(b)/log_b(a) = 1/f(a) . (****)

Agora é só comparar os resultados obtidos acima . Espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [Logaritmo] - Dúvida na resolução

Mensagempor mota_16 » Dom Dez 08, 2013 21:30

Eu compreendi.... De fato eu esqueci de levar a condição imposta para a e b. Agradeço a ajuda dos colegas!
mota_16
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Sex Dez 06, 2013 10:36
Formação Escolar: ENSINO MÉDIO
Área/Curso: Regular
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}