• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[FUNÇÃO] Inversa

[FUNÇÃO] Inversa

Mensagempor Reavourz » Qui Jul 10, 2014 17:21

Olá pessoal estou com uma dúvida na parte da equação, bom vamos lá.

Exemplo:
y=2x+1

Eu substituí o y por x e o x por y ficando assim:
x=2y+1

Resolução:

x-2y=1=>
       -2y=-x+1=>
       -2y=-x+1.(-1)=>
        2y=x-1=>

y=\frac {x-1}{2}

Ai estava eu pesquisando algumas coisas vi isso em um site.

Para determinar a função inversa de f(x)=2x+1 basta:

y=2x+1 (trocar x por y)

x=2y+1 (isolar o y)

-2y= – x+1 (O +1 não deveria virar -1)?

2y= x+1 ( COMO PODE ISSO?)

y=(x+1)/2

f-¹(x)=(x+1)/2

Em meu livro também tem um parecido:

y=-4x+1

x=-4y+1=>
x+4y=1 =>
4y=-x+1

y=\frac{-x+1}{4}

no livro o resultado é y=\frac{1-x}{4}

Desde já agradeço.
Reavourz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jun 13, 2014 22:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [FUNÇÃO] Inversa

Mensagempor young_jedi » Qui Jul 10, 2014 21:17

a primeira função que voce posto

f(x)=2x+1

y=2x+1

x=2y+1

agora passando o x para o lado esquerdo da equação

0=2y-x+1

e passando o y para o lado direito

-2y=-x+1

multiplicando a equação por -1

2y=x-1

y=\frac{x-1}{2}

realmente a resposta apontada esta errada

agora o segundo caso

o resultado encontrado foi

y=\frac{-x+1}{4} que é a mesma coisa que y=\frac{1-x}{4}

esta correto não tem nenhuma incoerencia
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [FUNÇÃO] Inversa

Mensagempor Reavourz » Qui Jul 10, 2014 23:37

vlw cara pensei que estava errado minha resolução, pois essa Y=(x+1)/2 eu vi em um site que estava tratando de funções inversas, tenso quem aprendeu por lá aprendeu errado. Obrigado pela ajuda.

Pode me ajudar nesta aqui?

y=\frac {6x-1}{3x+2}

Bom o gabarito do livro está:

y=\frac {2x+1}{6-3x}

Eu fiz a primeira resolução:
Não consigo enxergar o que tem de errado aqui.
x(3y+2)=6y-1  =>  3xy+2x=6y-1  =>  3xy-6y=-2x-1 =>

=>  y(3x-6)=-2x-1  =>  y=\frac {-2x-1}{3x-6}

Fiz depois a segunda:

x(3y+2)=6y-1  =>  3xy+2x=6y-1  =>  2x+1=-3xy+6y  =>

=>  -3xy+6y=2x+1  =>  y(-3x+6)=2x+1  =>  y=\frac {2x+1}{6-3x}

Não sei o que estou fazendo de errado pois na y=-4x+1 deu das duas formas, tanto passando 4x positivo, como deixando negativo.
Reavourz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jun 13, 2014 22:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [FUNÇÃO] Inversa

Mensagempor young_jedi » Sex Jul 11, 2014 18:54

não tem nada de errado é so uma questão de trabalhar os sinais da expressão

y=\frac{-2x-1}{3x-6}

y=\frac{(-1)(2x+1)}{(-1)(-3x+6)}

simplificando o -1

y=\frac{2x+1}{6-3x}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [FUNÇÃO] Inversa

Mensagempor Reavourz » Sáb Jul 12, 2014 00:11

vlw cara me ajudou muito, não tinha me ligado de aplicar o (-1) na fração vlw, muito obrigado.
Reavourz
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Jun 13, 2014 22:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.