• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equações elementares

Equações elementares

Mensagempor douglasjro » Seg Jan 10, 2011 19:38

O valor de m, para que uma das raízes da equação x^{2}+mx+27=0 seja o quadrado da outra,é:
a)-3 b)-9 c)-12 d)3 e)6

Me ajudem...
Obrigado.
Douglas Oliveira
douglasjro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Jan 10, 2011 18:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Processos Gerenciais
Andamento: cursando

Re: Equações elementares

Mensagempor Renato_RJ » Seg Jan 10, 2011 21:54

Amigo, as opções estão certas ? Não seria 12 em vez de -12 ?

Grato,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Equações elementares

Mensagempor VtinxD » Ter Jan 11, 2011 00:58

Acho que deve ser -12 visto que pelas relações de girard temos:
{r}_{1}+{r}_{2}=-m \Rightarrow {r}_{1}+ {({r}_{1})}^{2}=-m \Rightarrow {r}_{1\left({r}_{1}+1 \right)}=-m
Sendo assim o unico numero ali que apresenta o produto de consecutivos é o -12 e como r>1 a soma é positiva.
Espero não estar falando bobagem.
VtinxD
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 64
Registrado em: Dom Ago 15, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado em Matematica
Andamento: cursando

Re: Equações elementares

Mensagempor Renato_RJ » Ter Jan 11, 2011 01:10

VtinxD escreveu:Acho que deve ser -12 visto que pelas relações de girard temos:
{r}_{1}+{r}_{2}=-m \Rightarrow {r}_{1}+ {({r}_{1})}^{2}=-m \Rightarrow {r}_{1\left({r}_{1}+1 \right)}=-m
Sendo assim o unico numero ali que apresenta o produto de consecutivos é o -12 e como r>1 a soma é positiva.
Espero não estar falando bobagem.


Humm... Está explicado como eu achei 12 em vez de -12, eu fiz com m positivo, e não negativo como você bem descreveu....
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Equações elementares

Mensagempor douglasjro » Ter Jan 11, 2011 18:36

É -12 mesmo
Mas como se resolve então?
Obrigado
Douglas Oliveira
douglasjro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Jan 10, 2011 18:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Processos Gerenciais
Andamento: cursando

Re: Equações elementares

Mensagempor Renato_RJ » Ter Jan 11, 2011 19:23

douglasjro escreveu:É -12 mesmo
Mas como se resolve então?
Obrigado


Geralmente equações do 2º grau seguem a propriedade de Girard:

a \cdot x^2 + m \cdot x + p = 0 \Rightarrow \, -m = x_1 + x_2 \quad e \quad p = x_1 \cdot x_2

Logo, teremos:

-m = x_1 + x_2 \quad e \quad 27 = x_1 \cdot x_2

27  = 3^3, logo 27 = 9 x 3, então -m = 9 + 3.

Abraços,
Renato.
Iniciando a minha "caminhada" pela matemática agora... Tenho muito o quê aprender...
Avatar do usuário
Renato_RJ
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 306
Registrado em: Qui Jan 06, 2011 15:47
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado em Matemática
Andamento: cursando

Re: Equações elementares

Mensagempor douglasjro » Ter Jan 11, 2011 19:43

Muito obrigado...
Douglas Oliveira
douglasjro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 28
Registrado em: Seg Jan 10, 2011 18:59
Formação Escolar: ENSINO MÉDIO
Área/Curso: Processos Gerenciais
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.