por DIego Gomes » Seg Dez 16, 2013 23:05
Seja a e b números inteiros.
Prove que a² = 0, então a = 0.
Dúvida:
se considero a² = a * a e sendo a * a = 0, se dividir ambos por a, vou ter uma indeterminação? pois a = 0.
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
por Pessoa Estranha » Seg Dez 16, 2013 23:23
Olá !
Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
![{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0 {a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0](/latexrender/pictures/fe8e3663a1c07292c9bbabf417956651.png)
.
Espero ter ajudado.

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por DIego Gomes » Seg Dez 16, 2013 23:30
Pessoa Estranha escreveu:Olá !
Sim, você obterá uma indeterminação. Dentre várias maneiras de resolver, eu faria assim:
![{a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0 {a}^{2} = 0 \rightarrow \sqrt[2]{{a}^{2}} = \sqrt[2]{0} \rightarrow \left|a \right| = 0 \rightarrow a = 0](/latexrender/pictures/fe8e3663a1c07292c9bbabf417956651.png)
.
Espero ter ajudado.

Não tinha pensado desta forma. Só tem um problema, é que no capítulo deste exercício não foi definido expoente fracionário. O que tem definido é somente as propriedades de soma e produto.
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
por e8group » Seg Dez 16, 2013 23:36
Há varias formas . Uma delas supor absurdo que

, e assim existe

tal que

,contradição .
Nota para quaisquer

pois ,

.
Alternativamente ,pelo elemento neutro aditivo

. Daí segue pela unicidade do elemento neutro da multiplicação que

que novamente por unicidade ,desta vez do

que resulta

.
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por DIego Gomes » Seg Dez 16, 2013 23:42
santhiago escreveu:Há varias formas . Uma delas supor absurdo que

, e assim existe

tal que

,contradição .
Nota para quaisquer

pois ,

.
Alternativamente ,pelo elemento neutro aditivo

. Daí segue pela unicidade do elemento neutro da multiplicação que

que novamente por unicidade ,desta vez do

que resulta

.
BOA !!!! Pelo o elemento neutro !!!!!!!!
-
DIego Gomes
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Seg Dez 16, 2013 22:37
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Análise de Sistemas
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Teoremas e corolários para séries
por Aprendiz2012 » Qua Out 03, 2012 10:51
- 1 Respostas
- 1383 Exibições
- Última mensagem por young_jedi

Qua Out 03, 2012 11:04
Sequências
-
- Limite de Funções trigonométricas - Uso dos Teoremas fundame
por ARCS » Qua Jan 05, 2011 21:23
- 1 Respostas
- 1385 Exibições
- Última mensagem por OtavioBonassi

Qua Jan 05, 2011 21:32
Cálculo: Limites, Derivadas e Integrais
-
- Proposições
por feraferrari » Qui Fev 24, 2011 15:12
- 3 Respostas
- 2547 Exibições
- Última mensagem por LuizAquino

Sex Fev 25, 2011 08:54
Funções
-
- Proposições com variáveis
por rrt » Dom Jul 28, 2013 20:57
- 5 Respostas
- 3170 Exibições
- Última mensagem por rrt

Seg Jul 29, 2013 18:32
Funções
-
- considere as proposiçoes
por flavio neves » Qua Fev 24, 2016 15:10
- 0 Respostas
- 1287 Exibições
- Última mensagem por flavio neves

Qua Fev 24, 2016 15:10
Lógica
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.